

Status of LIGO

June 22, 2015 Daniel Sigg LIGO Hanford Observatory (on behalf of the LIGO Scientific Collaboration)

G1500711

Amaldi Meeting 2015, Gwangju, South Korea

Highlights

Robust Locking Achieved

- Livingston Observatory: First lock on May 27, 2014
- Hanford Observatory: First lock on February 7, 2015
- Sensitivity of initial detectors surpassed quickly
 - Current inspiral range: 50 to 70 Mpc
- □ ER7 completed
 - 40 hours of coincident data
- Preparing for O1: September to December
- □ Issues:

LIGO

- High Q Resonances and Uncontrolled DOFs
- ESD Charging Issues
- Parametric Instabilities

Progress

aLIGO Commissioning Progress

Amaldi Meeting 2015, Gwangju, South Korea

Locking

LIGO

7th Engineering Run

- □ May 16 to June 14, 2015
- First coincidence data between L1 and H1
- Test of the analysis pipeline
- H1 110 hours, L1 74 hours, 42 hours of coincidence (as of June 11)
- Successfully completed
 - Calibrated strain readout
 - Sufficient automation to be controllable by operators
 - Hardware injections Blind Injections Implementation and Testing
 - Approximately 7 days of data taking

LIGO

Binary Neutron Star Range (SNR 8, 1.4M_☉, sky average)

ER7 Segments (24 hours)

H1 Guardian ISC_LOCK state

G1500711

LIGO

Amaldi Meeting 2015, Gwangju, South Korea

Parametric Instabilities

G1500711

Amaldi Meeting 2015, Gwangju, South Korea

Evans et al., Phys. Rev. Lett. 114, 161102 (2015)

10

High Power Operations

□ With 25W input power

- No significant thermal loading
- Parametric instabilities mitigated with ETM ring heater
- Angular instabilities under control

□ At higher powers

- Hartmann wavefront sensors to map ITMs
- Ring heaters for ITMs and ETMs
- \succ CO₂ laser heating for ITM compensation plates
- Active damping control for parametric instabilities
- Testing a passive mode damper (shunted piezo-electric transducer)
- Angular instabilities require more control bandwidth (induces noise)

Electro Static Drive

LIGO

Electro Static Drive (2)

□ Why so much charge? Can be 100s of Volts

- First contact leaves a charge behind
- Charge variation appears to be caused by ultraviolet light emitted by ion pumps mounted at the test mass chambers (recharging)
- Additional Noise and Uncertainty
 - Field lines must terminate somewhere (e.g. ring heater)
 - Drive strength depends on charge, adds a linear term
 - Charge is not uniform and varying
- □ In-vacuum ion injecting did not fix the problem
 - Hard to reach the back surface
- In-air, in-situ neutralization procedure
 - Test mass stays discharged (without an ion pump)

Test Mass Discharging

LIGO

Summary

- Sensitivity of initial detectors surpassed quickly
- Robust locking achieved
- Parametric instabilities are real; need to be dealt with
- Test mass charge is a problem
 - Discharging effort underway
- Looking forward to the first observing run
- What's left?
 - > High power operations: thermal control, PI, alignment instability
 - Low frequency noise hunting & controls optimization
 - Make the seismic system work during bad weather
 - Damping of high Q modes

