State observers and Kalman filtering

High performance vibration isolation systems

Prof.dr. J.F.J. van den Brand

Multi-stage attenuation systems

- Bench low frequency control
 - Mark Beker

– Paper, see:

State observers and Kalman filtering for high performance vibration isolation systems M.G. Beker,^{1,*} A. Bertolini,¹ J.F.J. van den Brand,^{1,2} H.J. Bulten,^{1,2} E. Hennes,¹ and D.S. Rabeling¹

A. Bertonni, J.F.J. van den Brand, J.F. H.J. Buiten, L. Hennes, and D.S. F.

¹ National Institute for Subatomic Physics Nikhef,

Science Park 105, 1098 XG, Amsterdam, The Netherlands

² VU University Amsterdam, de Boelelaan 1081, 1081 HV Amsterdam, The Netherlands

 http://www.nikhef.nl/pub/services/biblio/ /theses_pdf/thesis_M_G_Beker.pdf

- Vertical DOF

Wiener vs Kalman filtering

Least squares

- Minimizes the sum of squares of the errors
- Has no "knowledge" of the system

Wiener filter

- x[n] = s[n] + w[n] -> "estimate s[n] so as to minimize the error"
- Stationary processes The statistical properties of the inputs don't change in t
- Causal, length grows, (generally) non-recursive
- For discrete samples reduces to least squares solution

Kalman filter

- Generalization for Wiener filter to non-stationary processes The signal is characterized by a dynamical model
- Recursive don't need to re-evaluate all data at each step
- Uses prior knowledge of the system
 - System is described by state vector x (unobservable)
 - State can be estimated based on x previous data z and model
 - Requires a dynamic (state space) model

Finite element models used to identify all modes of the system

Where needed passive eddy current dampers can be used to lower Q-factor of higher order resonances

Finite element model: Higher order modes

Simulated performance Vertical transfer function

Simulated performance Horizontal transfer function

Simulated performance Horizontal to tilt coupling

Optimal control: state observer

- State space model
 - Imperative to have an accurate model
- FEA
 - Detailed description of the system
 - Tune model to measured transfer functions

SYSTEM
IDENTIFICATION WITH
BAYES THEOREM AND
NON GAUSSIAN
DISTRIBUTIONS

G. Cella

Three basic rules

Law of total probability

$$P\left(\boldsymbol{x}_{n},t_{n}\mid\boldsymbol{y}_{1},t_{1};\cdots;\boldsymbol{y}_{n-1},t_{n-1}\right)=\int P\left(\boldsymbol{x}_{n},t_{n}\mid\boldsymbol{x}_{n-1},t_{n-1}\right)P\left(\boldsymbol{x}_{n-1},t_{n-1}\mid\boldsymbol{y}_{1},t_{1};\cdots;\boldsymbol{y}_{n-1},t_{n-1}\right)d\boldsymbol{x}_{n-1}$$

2. Bayes' theorem

$$P\left(\boldsymbol{x}_{n},t_{n}\mid\boldsymbol{y}_{1},t_{1};\cdots;\boldsymbol{y}_{n},t_{n}\right)=\frac{P\left(\boldsymbol{y}_{n}\mid\boldsymbol{x}_{n}\right)P\left(\boldsymbol{x}_{n},t_{n}\mid\boldsymbol{y}_{1},t_{1};\cdots;\boldsymbol{y}_{n-1},t_{n-1}\right)}{\int P\left(\boldsymbol{y}_{n}\mid\boldsymbol{x}_{n}\right)P\left(\boldsymbol{x}_{n},t_{n}\mid\boldsymbol{y}_{1},t_{1};\cdots;\boldsymbol{y}_{n-1},t_{n-1}\right)d\boldsymbol{x}_{n}}$$

3. The product of two (multivariate) gaussian distributions is proportional to a (multivariate) gaussian distributions:

$$\mathcal{N}\left(\boldsymbol{\mu}_{1}, \mathbb{C}_{1}^{-1}\right) \mathcal{N}\left(\boldsymbol{\mu}_{2}, \mathbb{C}_{2}^{-1}\right) = Z_{12} \mathcal{N}\left(\boldsymbol{\mu}_{12}, \mathbb{C}_{12}^{-1}\right)$$

$$\mathbb{C}_{12}^{-1} = \mathbb{C}_1^{-1} + \mathbb{C}_2^{-1}$$
 $\mu_{12} = \mathbb{C}_{12} \left(\mathbb{C}_1^{-1} \mu_1 + \mathbb{C}_2^{-1} \mu_2 \right)$

$$\dot{p} = -m\omega^2 x$$

$$\dot{x} = \frac{1}{2}n$$

- We measure the state (position and velocity). Maybe with some measurement error.
- We enlarge the space, adding the unknown parameter
- We model our ignorance with a joint probability distribution
- We assume we have a good model...
- ...which can be used to calculate the time evolution (RULE 1 at work)

$$\dot{p} = -m\omega^2 x$$

$$\dot{x} = \frac{1}{p}$$

- We measure the state (position and velocity). Maybe with some measurement error.
- We enlarge the space, adding the unknown parameter
- We model our ignorance with a joint probability distribution
- We assume we have a good model...
- ...which can be used to calculate the time evolution (RULE 1 at work)

$$\dot{p} = -m\omega^2 x$$

$$\dot{x} = \frac{1}{-n}$$

- We measure the state (position and velocity). Maybe with some measurement error.
- We enlarge the space, adding the unknown parameter
- We model our ignorance with a joint probability distribution
- We assume we have a good model...
- ...which can be used to calculate the time evolution (RULE 1 at work)

$$\dot{p} = -m\omega^2 x$$

$$\dot{x} = \frac{1}{p}$$

- We measure the state (position and velocity). Maybe with some measurement error.
- We enlarge the space, adding the unknown parameter
- We model our ignorance with a joint probability distribution
- We assume we have a good model...
- ...which can be used to calculate the time evolution (RULE 1 at work)

$$\dot{p} = -m\omega^2 x$$

$$\dot{x} = \frac{1}{-m}p$$

- We measure the state (position and velocity). Maybe with some measurement error.
- We enlarge the space, adding the unknown parameter
- We model our ignorance with a joint probability distribution
- We assume we have a good model...
- ...which can be used to calculate the time evolution (RULE 1 at work)

- This is no more a gaussian distribution (in general). How to parameterize it?
 - Each horizontal line is a gaussian distribution
 - Gaussian misture can be a good representation:

$$\sim \sum w_i \mathcal{N}(\boldsymbol{\mu}_i, \mathbb{C}_i)$$

 Now, we measure the position and the velocity again, and we use RULE 2 and RULE 3

$$\sim \sum w_i^* \mathcal{N}(\boldsymbol{\mu}_i^*, \mathbb{C}_i^*)$$

- This is no more a gaussian distribution (in general). How to parameterize it?
 - Each horizontal line is a gaussian distribution
 - Gaussian misture can be a good representation:

$$\sim \sum w_i \mathcal{N}(\boldsymbol{\mu}_i, \mathbb{C}_i)$$

 Now, we measure the position and the velocity again, and we use RULE 2 and RULE 3

$$\sim \sum w_i^* \mathcal{N}(\boldsymbol{\mu}_i^*, \mathbb{C}_i^*)$$

This could have several applications

Tracking the Pound Drever signal

- Identify optical parameters
- Improve locking
- Systems with nonlinear dynamics
 - Radiation pressure
- Adjusting noise models:

$$dZ(t) = \int K(t, t') dW(t')$$

- Selection strategy needed
 - Elements with low weight must be removed
 - Gaussian misture not necessarily a good representation in all cases

Suspension Parameter Estimation for State Space Models

Brett Shapiro

GWADW – 19 May 2015

State space from physical values

Parameter Estimation Algorithm

$$J = \begin{bmatrix} \frac{\partial e_1}{\partial p_1} & \frac{\partial e_1}{\partial p_2} & \dots \\ \frac{\partial e_2}{\partial p_1} & \frac{\partial e_2}{\partial p_2} & \dots \\ \frac{\partial e_3}{\partial p_1} & \frac{\partial e_3}{\partial p_2} & \dots \\ \dots & \dots & \dots \end{bmatrix}$$

- J = Jacobian matrix of error gradients wrt parameters
- e = % error between modeled and measured resonant frequencies
- p = parameter value (mass, stiffness, length, etc)

Mismatch between model and measurement

Parameter Estimation Algorithm

$$J = \begin{bmatrix} \frac{\partial e_1}{\partial p_1} & \frac{\partial e_1}{\partial p_2} & \dots \\ \frac{\partial e_2}{\partial p_1} & \frac{\partial e_2}{\partial p_2} & \dots \\ \frac{\partial e_3}{\partial p_1} & \frac{\partial e_3}{\partial p_2} & \dots \\ \dots & \dots & \dots \end{bmatrix}$$
• $J = \text{Jacobian matrix of error gradients wrt parameters}$
• $e = \%$ error between modeled and measured resonant frequencies
• $p = \text{parameter value (mass, stiffness, length, etc)}$

Gauss-Newton algorithm – an modification of Newton's method (2nd order)

$$p_{k+1} = p_k + \alpha_k d_k$$
$$d_k = J_k^{\dagger} e_k$$

Update the parameter list, p, with step size α

Update the descent direction d with the psuedo-inverse of J.

Before Parameter Estimation

After Parameter Estimation

