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Wiener vs Kalman filtering

1]
= Least squares
— Minimizes the sum of squares of the errors T 5 ? T T
— Has no “knowledge” of the system \I 1 & 3, 4 5 >
= Wiener filter Y

X[n] = s[n] + w[n] -> “estimate s[n] so as to minimize the error” -7[5]\_]

— Stationary processes — The statistical properties of the inputs don’t change in t
— Causal, length grows, (generally) non-recursive
— For discrete samples reduces to least squares solution

= Kalman filter

- Generalization for Wiener filter to non-stationary processes — The signal is
characterized by a dynamical model

- Recursive — don’t need to re-evaluate all data at each step
— Uses prior knowledge of the system

— System is described by state vector x (unobservable)
— State can be estimated based on X previous data z and model
— Requires a dynamic (state space) model



Finite element models used to identify all modes
of the system
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Finite element model: Higher order modes
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Higher order GAS modes
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Simulated performance
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Horizontal TF

Simulated performance
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Simulated performance
Horizontal to tilt coupling
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Optimal control: state observer

= State space model
- Imperative to have an accurate model

= FEA

— Detailed description of the system

— Tune model to measured transfer functions



Questions?
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Three basic rules

1. Law of total probability
P (ajnatn ’ y17t1; e ;yn—latn—l) = /P<$n7tn ‘ mn—latn—l)P (mn—latn—l ‘ ylatl; e ;yn—lvtn—l) dwn—l

2. Bayes’' theorem

_ P<yn ‘ CBn)P<£Bn,tn | Yy, b1 ;yn—latn—l)
fP(yn | CCn)P (mﬂntn | Yi,t1;- ;yn—latn—1> dx,

P(mTMt?’L | ylatl;"' 7yn7tn)

3. The product of two (multivariate) gaussian distributions is proportional to a
(multivariate) gaussian distributions:

N(H1a(c1_1)N(N2>CQ_1) = Z1oN (N127<C1_21>

Ciy =C; +Cy
pi2 = Ci2 (CT g + C5 )



A simple example: a suspension (pendulum) with uncertain
length

Description in the phase space:
P = —mw?x

: 1
w=—p
m

We measure the state (position and velocity).
Maybe with some measurement error.

We enlarge the space, adding the unknown A
parameter
W e
We model our ignorance with a joint
probability distribution

We assume we have a good model... ~_

...which can be used to calculate the time P T
evolution (RULE 1 at work) 5 T
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A simple example: a suspension (pendulum) with uncertain
length

» This is no more a gaussian distribution (in
general). How to parameterize it?
= Each horizontal line is a gaussian distribution
» Gaussian misture can be a good representation:

* Now, we measure the position and the
velocity again, and we use RULE 2 and
RULE 3 o

~ Y wiN(pf,CY) B
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This could have several applications
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Tracking the Pound Drever signal
= |dentify optical parameters
= Improve locking

Systems with nonlinear dynamics
= Radiation pressure

Adjusting noise models:
dZ(t) = /K (¢, t") dW (")

Selection strategy needed
= Elements with low weight must be removed

= Gaussian misture not necessarily a good
representation in all cases



Suspension Parameter Estimation
for State Space Models
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State space from physical values =~

B

Inertia

X =Ax+Bu
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MATLAB

Stiffness

Energy methods convert
parameters to matrices

e Gradient of potential energy
e Gradient of kinetic energy

\See T020205
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Parameter Estimation Algorithm

de, de,
op, 9p, * J=Jacobian matrix of error gradients wrt parameters
de, ode
7 8—2 8—2 * e =% error between modeled and measured resonant
Py 0P, frequencies
de, de,
ap, op, e p=parameter value (mass, stiffness, length, etc)
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Parameter Estimation Algorithm

de, de,
op, 9p, * J=Jacobian matrix of error gradients wrt parameters
de, ode
7 8—2 6—2 * e =% error between modeled and measured resonant
Py 0P, frequencies
de, de,
ap, op, e p=parameter value (mass, stiffness, length, etc)

Gauss-Newton algorithm — an modification of Newton’s method (2" order)

P =Dt O!kdk Update the parameter list, p, with step size a

T
dk = Jkek Update the descent direction d with the psuedo-inverse of J.

4
References: T1000458 and “Selection of Important Parameters Using Uncertainty and Sensitivity Analysis”, Shapiro et al.
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Before Parameter Estimation
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After Parameter Estimation

Pitch to Pitch Stage 1 Transfer Function: After Fit, Full Measurement Se
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