

The road to 10 dB

Kate Dooley, Emil Schreiber

GWADW, Girdwood, May 19 2015

LIGO-G1500668

1

Motivation

IN DPE /	ET Design Study			ET-0106C-10 issue : 4 date : June 28, 2011 page : 242 of 451	
=	Parameter	ET-D-HF	ET-D-LF		
_	Arm length	$10\mathrm{km}$	$10\mathrm{km}$		
	Input power (after IMC)	$500\mathrm{W}$	$3\mathrm{W}$		
	Arm power	$3\mathrm{MW}$	$18\mathrm{kW}$		
	Temperature	$290\mathrm{K}$	$10\mathrm{K}$		
	Mirror material	fused silica	silicon		
	Mirror diameter / thickness	$62\mathrm{cm}$ / $30\mathrm{cm}$	min $45 \mathrm{cm}/\mathrm{T}$		
	Mirror masses	$200\mathrm{kg}$	$211\mathrm{kg}$		
	Laser wavelength	$1064\mathrm{nm}$	$1550\mathrm{nm}$		
	SR-phase	tuned (0.0)	detuned (0.6)		
	SR transmittance	10%	20%		
	Quantum noise suppression	freq. dep. squeez.	freq. dep. squee	z.	
	Filter cavities	$1 \times 10 \mathrm{km}$	$2 \times 10 \mathrm{km}$	_	
	Squeezing level	$10 \mathrm{dB}$ (effective)	$10 \mathrm{dB}$ (effective))	
	Beam shape	LG_{33}	TEM_{00}	-	
	Beam radius	$7.25\mathrm{cm}$	$9\mathrm{cm}$		
	Scatter loss per surface	$37.5\mathrm{ppm}$	$37.5\mathrm{ppm}$		
	Seismic isolation	SA, 8 m tall	mod SA, 17 m t	all	
	Seismic (for $f > 1 \mathrm{Hz}$)	$5 \cdot 10^{-10} \mathrm{m}/f^2$	$5 \cdot 10^{-10} \mathrm{m}/f^2$		
	Gravity gradient subtraction	none	none		

Table 10: Summary of the most important parameters of the ET-D high and low frequency interferometers. SA = superattenuator, freq. dep. squeez. = squeezing with frequency dependent angle.

ET-0106C-10

also, all LIGO strawman designs assume around 10 dB observed squeezing

The main challenges

May 19, 2015

GWADW - Girdwood, AK

The injection path

Loss budget

component	achieved at GEO (at some point)	goal (numbers from Strawman Team Red)
OPA internal loss	5%	3%
Faraday isolator (rotator + 2 PBS')	4 · 2%	3 · 0.8%
loss on IFO reflection	1% (estimated)	1%
mode matching to OMC	4%	1%
OMC internal loss	2%	0.5%
PD quantum efficiency	1%	0.5%
filter cavity	-	1%
tap off	2 · 1%	-
total	21% (40% observed)	9%

Low loss Faraday isolators

- current GEO Faraday rotators have 0.6% single pass loss
- PBS cubes show up to 1% loss

- Glasgow PBS design: 220 ppm
- need redesign if we care for both polarizations

 isolator design at the University of Florida based on optimized IFI design: 0.4% loss

Y
. 5
K. D. Skeldon et al., 2000

Isolator element	Optical loss (ppm)
Prism polarizer (per element/total)	250/500
HWP reflection (per face/total)	300/600
HWP absorption	50
TGG reflection (per face/total)	500/1000
TGG absorption (12 mm crystal)	1800

Table 2: Approximate optical loss of each component in an improved low loss Output Faraday Isolator design. Altogether, these specifications lead to roughly 0.4% single pass loss.

Alignment control

E. Schreiber et al., LIGO-P1500056

The phase noise roadmap

May 19, 2015 GWADW – Girdwood, AK

Total phase noise (current detectors)

Out-of-loop measurements of total phase noise

GEO:

LIGO:

Phase noise budget

source	rms phase [mrad]
in-loop: up to 2 kHz	4
audio: 2 kHz – 45 kHz	13
RF: 14.9 MHz MI sidebands	6.7
RF: 9 MHz SRC sidebands	5.5

squeezer phase error signal [rad/rtHz]

10⁰ Free-running 10⁻¹ 10⁻² 10⁻³ In-loop **Both** 10⁻⁴ Sensor noise 10⁰ 10² 10³ 10¹ frequency [Hz]

(LIGO accounted-for phase noise = ~ 25 mrad rms)

Both interferometers observe excess phase noise.

Squeezing phase error signal: 3 choices

New signals = stable squeezing

• Stability of h(t) from 4 kHz – 5 kHz (a shot-noise-limited region)

Phase noise from RF sidebands

squeezing ellipse orientation must match angle of interferometer output field

May 19

Phase noise from RF sidebands

Example: GEO 14.9 MHz Michelson sidebands

3 years of squeezing

Adapt the interferometer design

Don't forget about other noise sources

Actual squeezing level: 2.4 dB

May 19, 2015

2 OMCs a la Virgo?

Reduce losses and phase noise from RF sidebands

- 2 OMCs in series
- -- low finesse \rightarrow low losses
- -- double pole \rightarrow sufficient filtering of RF sidebands

Summary and open questions

For 10 dB of squeezing:

- Phase noise must be reduced from ~35 mrad to ~10 mrad
- Optical losses must be reduced from $\sim 40\%$ to $\sim 8\%$

Summary and open questions

For 10 dB of squeezing:

- Phase noise must be reduced from ~35 mrad to ~10 mrad
- Optical losses must be reduced from ~40% to ~8%

In what other ways can we adapt the interferometer to be compatible with 10 dB squeezing?

- 2 OMCs?
- can we minimize pick-offs for other control beams?
- can we make use of OMC reflection for ifo alignment?
- ?
- •