Experimental highlights and challenges in Advanced LIGO

Kiwamu Izumi (LIGO Hanford Observatory) for LIGO Scientific Collaboration

LIGO-G1500654-v2

16th Annual meeting of the Northwest section of the APS

Advanced LIGO on track

Experimental Challenge

It is not easy to achieve both robustness and low-noise

Items for robustness

- Lock acquisition
- Long run
- Automation
- Alignment control
- Tidal effect
- Thermal lensing
- Opto-mechanical instab.
- ∎ etc

Items for low noise

- Quantum noise
- Thermal noise
- Seismic noise
- Electronics noise
- Residual gass
- Scattering noise
- Acoustic coupling

etc

High binary range

3 11

Lock Acquisition

 Certain interferometric condition has to be achieved
4 optical lengths and laser freq. have to be controlled
Feedback to mirror positions/laser freq. and lock them to the operating point

Locking a Fabry-Perot

Why difficult ?

Optical cavities are nonlinear in general

6 11

Why difficult ?

Mitigation

To stop the mirror within linear range ΔL with force F, the work has to be greater than mirror's kinetic energy

Arm Length Stabilisation (ALS)

Provides a linear range wider than 10 um

Full lock achieved

Achieved at Livingston in May 2014
Achieved at Hanford in Feb. 2015

11

Conclusions

- It is a challenge to achieve both robustness and low-noise
- Lock acquisition has been improved by ALS
- Both observatories achieved full lock
- We are getting ready for the 1st observation run (starts at Sep. 2015)