

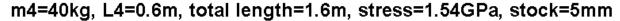
Suspension Upgrades: Discussion Points + Questions

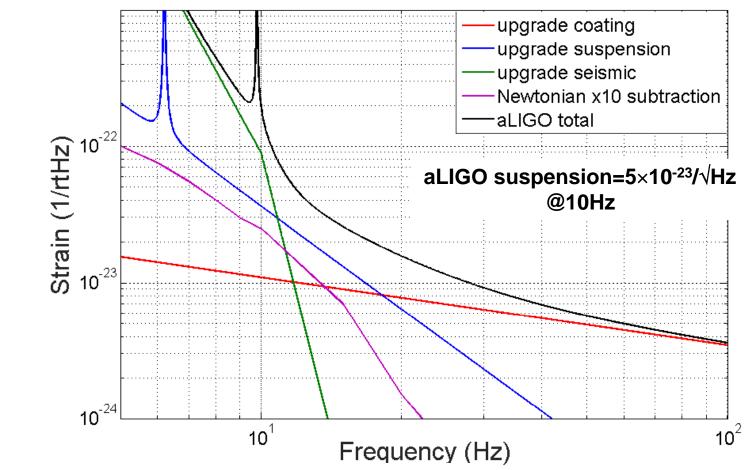
Giles Hammond (Institute for Gravitational Research, SUPA University of Glasgow)

Overview

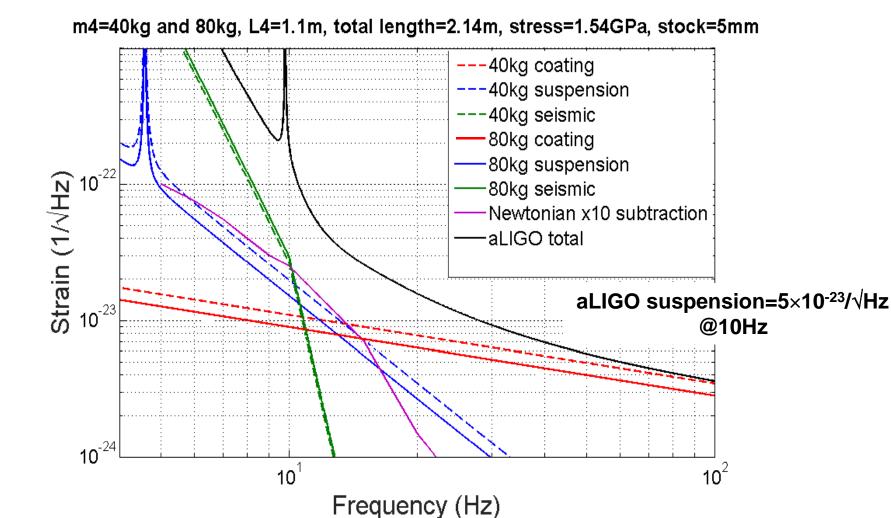
- Brief review of topologies
- R&D currently ongoing

Questions


- Longer + lower frequency: astrophysics rand/noise sources
- Modelling and Integration

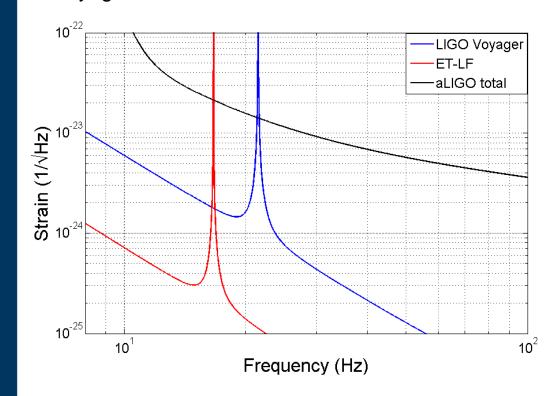


1. Higher Stress (>O1/A+)



- Minimal upgrade, only change final stage fibre geometry
- Ready by early 2016 with robustness testing (e.g. O1 upgrade or A+)

2. Longer Suspensions (A+, Explorer)

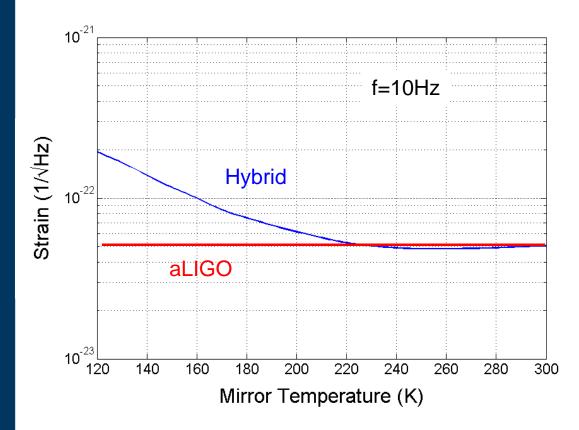


• Longer suspensions (final stage 1.1m) and higher stress offer further improvements for both 40kg and 80kg

3. Cold Suspensions (ET-LF/Voyager)

 Just showing suspension thermal noise for LIGO Voyager and ET-LF

Parameter	Voyager	ET-LF
Geometry	Ribbon	Fibre
Power (MW)	3	0.018
L (m)	0.6	1
Mass (kg)	143	200
Test Mass (K)	124	20
Pen. Mass (K)	77	4
φ thermal (mm)	-	1
strength (mm)	2.5×0.5	φ1.5
Stress (Gpa)	0.3	0.3


This is a best case as:

- dilution will be lower for real ribbons/fibres (≈×2-3 when necks are included)
- bond attachments and associated noise need to be included
- => community needs to work on robust modelling

4. Hybrid Suspensions

Similar to aLIGO performance until 240K, but then worse performance than aLIGO

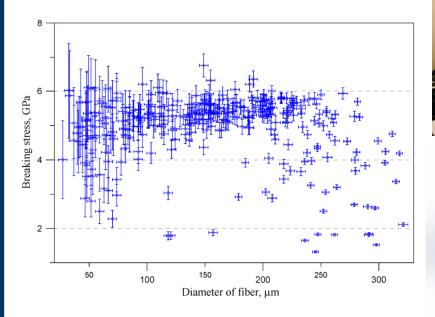
see talk by Marielle van Veggel (bonds)

$$\phi_{\text{thermoelas tic}} = \frac{YT}{\rho C} \left(\alpha - \sigma_o \frac{\beta}{Y} \right)^2 \left(\frac{\omega \tau}{1 + (\omega \tau)^2} \right)$$

- aLIGO uses thermoelastic cancellation to meet 10Hz requirement
- For cold silica, need to increase fibre diameter to maintain cancellation=> dilution gets worse
- T<240K, thermoelastic dominates until much lower temperature=> this pushes up thermal noise
- Challenges also with jointing materials with different CTE=>induced stress

Summary of Topologies

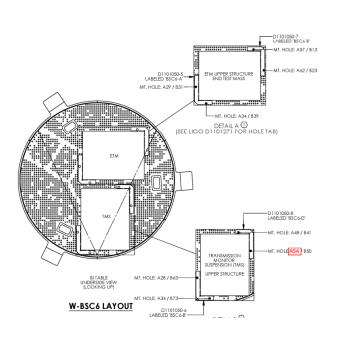
 There are a variety of suspension topologies which improve thermal noise performance

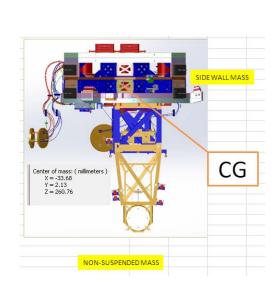

Parameter	High stress (e.g. A+)	Longer suspension (e.g. A+, Explorer)	Cold suspension (e.g. Voyager)	Hybrid suspension
10Hz improv.	×1.25	×2-3	×8 (Voyager), ×60 (ET-LF)	Not better than ×1.04
Hardware changes	None	modest-significant	significant	significant
Bounce mode	6Hz	5Hz	21Hz	6Hz
Violin mode	680Hz	370Hz	300Hz	680Hz
Stress	1.5GPa	1.5GPa	350MPa ⁽¹⁾	1.5GPa
Readiness	<1 year	≈2-3 year	≈3-5 years	≈3-5 years

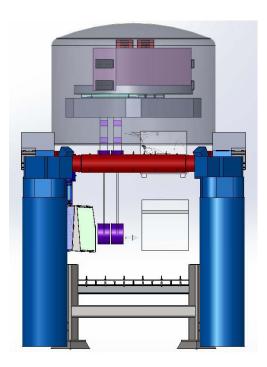
- (1): grown fibre tensile stresses will likely be higher
- To understand full benefit need to include quantum noise and Newtonian noise

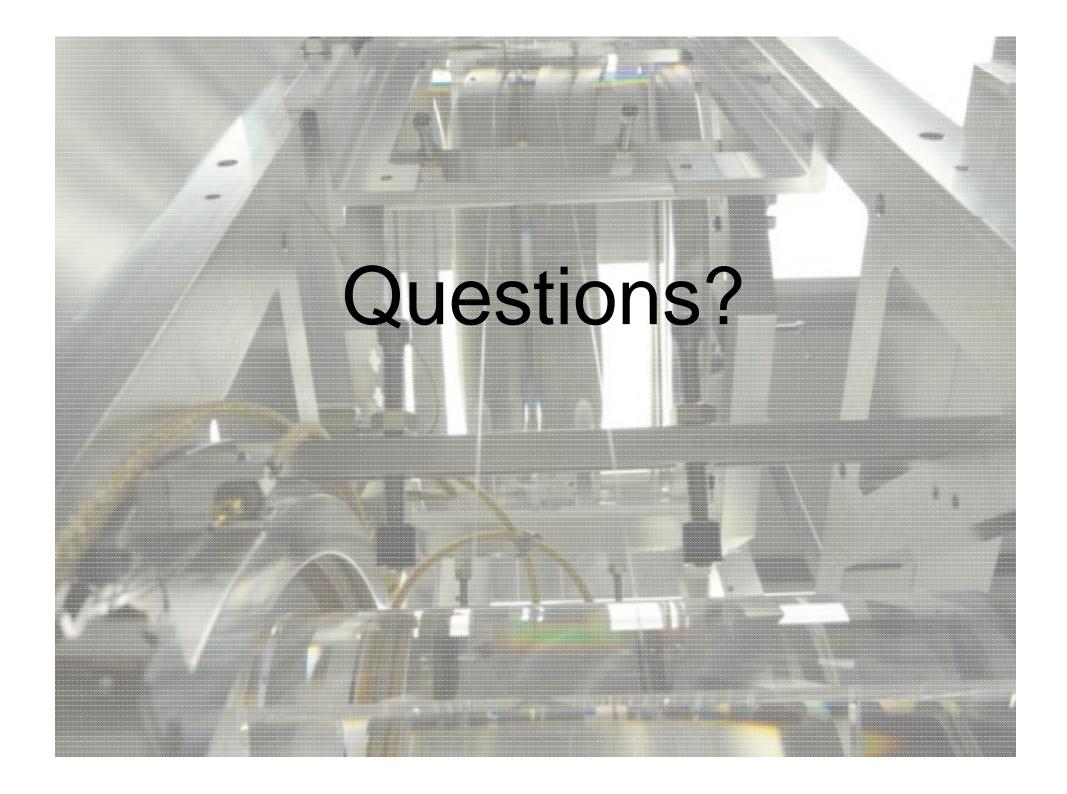
R&D

- Techniques to pull, weld and robustly test fused silica at higher stress
- Large scale test mass facility (up to 160kg)
- Springs of fused silica to lower vertical thermal noise
- Techniques to grow crystalline fibres
- Breaking test of silicon ribbons
- Tests of crackle noise

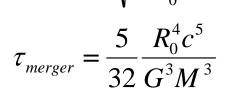


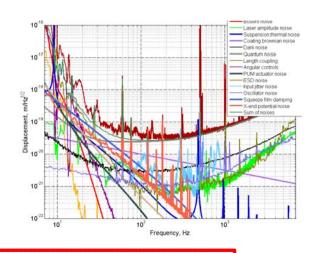





R&D

- Further characterisation of aLIGO suspension performance (LASTI and/or sites)
- Work with ISI team on better low frequency models, possible incremental improvements to ISI
- 80kg tests and longer suspension will require some modest re-engineering. Need to understand full implication via some case studies (e.g. ETM started)

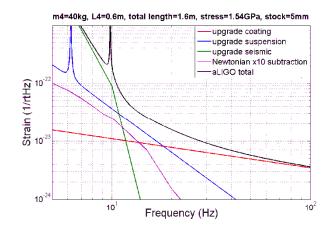



Longer + Lower Frequency

- Longer suspension push to lower operational frequency (depends on other noise source) reduction) and also lower bounce/roll modes
- The time in band is

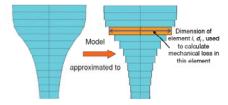
$$f_{GW} = \frac{1}{\pi} \sqrt{\frac{GM}{4R_0^3}}$$
 x2 longer when moving from 10Hz to 7.8Hz

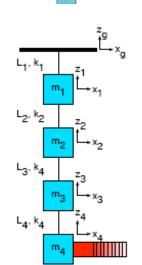
$$\Rightarrow \frac{\tau_{merger1}}{\tau_{merger2}} = \left[\frac{f_{GW2}}{f_{GW1}}\right]^{8/3}$$


- Astrophysics motivation depends on:
 - type of sources observed (NS-NS or BH binaries)
 - SNR build-up due to longer in time integration
 - longer trigger times for low latency searches (e.g. GRB's)

Longer + Lower Frequency

- Gaining low frequency benefit requires several noise sources to be tackled
- Newtonian subtraction
- Seismic noise
- Suspension thermal noise


- What other noise sources and considerations:
 - technical noise sources, better local control, better sensors (shadow/interferometric)
 - optimisation of local control with longer suspensions
 - optimum frequency of suspension modes (pitch-longitudinal coupling)
 - seismic improvements at low frequency
 - available height in chamber
 - installation and extraction techniques (e.g. cartridge install)
 - springs for additional vertical isolation



Modelling

- There are range of analytical and FEA codes out there for seismic and suspension estimation
- It seems sensible to use the IS working groups as a forum for the design of new suspensions, estimating their performance and developing necessary engineering solutions.

- Is there sufficient collaboration between the different groups
- What other codes are needed (GWINC_upgrade)
- Models at the early stage DO NOT correctly model dilution or the effect of fibre attachments via bonds. This is essential to develop most robust estimates
- What is appropriate feedback mechanism from the measurements made at LASTI/LIGO sites to inform future

- Astrophysics motivation depends on:
 - type of sources observed (NS-NS or BH binaries)
 - SNR build-up due to longer in time integration
 - longer trigger times for low latency searches (e.g. GRB's)
- •What other noise sources and considerations:
 - technical noise sources, better local control, better sensors (shadow/interferometric)
 - optimisation of local control with longer suspensions
 - optimum frequency of suspension modes (pitch-longitudinal coupling)
 - seismic improvements at low frequency
 - available height in chamber
 - installation and extraction techniques (e.g. cartridge install)
 - springs for additional vertical isolation
- Is there sufficient collaboration between the different groups
- What other codes are needed (GWINC_upgrade)
- Models at the early stage DO NOT correctly model dilution or the effect of fibre attachments via bonds. This is essential to develop most robust estimates
- What is appropriate feedback mechanism from the measurements made at LASTI/LIGO sites to inform future

Ŧ	•	•				