

Suspension Upgrades for Enhanced Interferometers

Giles Hammond (Institute for Gravitational Research, SUPA University of Glasgow)

Overview

- Motivation for warm and cold suspensions
- Noise terms
- Some possible topologies
 - Higher stress aLIGO suspensions
 - Longer warm suspensions (40kg -80kg)
 - Cold upgrade scenarios
 - Hybrid suspensions
- Summary

Motivation for Suspension Upgrades

Warm upgrades (e.g. A+, ET-HF, Cosmic Explorer)

- Fused silica
- 80kg 160kg test masses
- 60cm 120cm suspension lengths
- 800MPa 1.5GPa stress in fibres

Cold upgrades (e.g. LIGO Voyager, ET-LF)

- Silicon at 20K 120K
- 143kg/200kg test masses
- 60cm/100cm suspension lengths

OPEN ACCESS

Class. Quantum Grav. 31 (2014) 025017 (16pp)

Made open access 4 February 2014
Classical and Quantum Gravity

doi:10.1088/0264-9381/31/2/025017

Silicon mirror suspensions for gravitational wave detectors

A V Cumming^{1,4}, L Cunningham¹, G D Hammond¹, K Haughian¹, J Hough¹, S Kroker², I W Martin¹, R Nawrodt², S Rowan¹, C Schwarz³ and A A van Veggel¹

- Warm upgrades with fused silica offer a well developed technology and improvements in strain sensitivity at low frequency of up to 3.
- Cryogenic upgrades for LIGO Voyager offer potential improvements in strain sensitivity of ≈8.

Noise Terms

Suspension thermal noise

- uses a combination of analytical and FEA dilution
- horizontal, vertical and violin thermal noise

- uses finite test mass correction (Somiya and Yamamoto, Phys. Rev. D 79, 102004, 2009
- optimised aLIGO coatings (16×131nm Ta_2O_5 and 17×182nm SiO_2)

Seismic Noise

- uses DCC note by Shapiro et al. (T1300786) to estimate transmissibility (longitudinal and vertical)
- uses BSC requirements for ISI seismic noise (actually slightly better at 10Hz)

$$\frac{x_4}{x_g} = \frac{g^4}{(2\pi f)^8} \frac{1}{L_1 L_2 L_3 L_4} \frac{(m_1 + m_2 + m_3 + m_4)(m_2 + m_3 + m_4)(m_3 + m_4)m_4}{m_1 m_2 m_3 m_4}$$

Too mass

Upper intermediate mass (UIM)

Penultimate mass (PUM)

Test mass

1. Higher Stress (>O1/A+)

- LLO alog: posted 18:59, Wednesday 29 April 2015 last comment 07:14, Thursday 30 April 2015 (17946)
- Keeping current aLIGO test suspension geometry, and operating at 1.5GPa would push bounce/roll to 6Hz/9Hz, and violin modes to 680Hz

1. Higher Stress (>O1/A+)

• Keep end section at $800\mu m$, but thin middle section to $300\mu m$ (1.5GPa). Use 5mm stock to improve dilution.

• 350µm suspension (1.1GPa) demonstrated at LHO during aLIGO SUS weld training (April 2015)

1. Higher Stress (>O1/A+)

- Minimal upgrade, only change final stage fibre geometry
- Ready by early 2016 with robustness testing (e.g. O1 upgrade or A+)

2. Longer Suspensions (A+, Explorer)

• Longer suspensions (final stage 1.1m) and higher stress offer further improvements for both 40kg and 80kg

3. Cold Suspensions (ET-LF/Voyager)

LIGO Voyager assumes radiative cooling ET-LF assumes conduction cooling

Parameter	Voyager	ET-LF
Geometry	Ribbon	Fibre
Power (MW)	3	0.018
L (m)	0.6	1
Mass (kg)	143	200
Test Mass (K)	124	20
Pen. Mass (K)	77	4
φ thermal (mm)	-	1
strength (mm)	2.5×0.5	φ1.5
Stress (Gpa)	0.3	0.3

3. Cold Suspensions (ET-LF/Voyager)

• Just showing suspension thermal noise for LIGO Voyager and ET-LF

- This is a best case as:
 - dilution will be lower for real ribbons/fibres (≈×2-3 when necks are included)
 - bond attachments and associated noise need to be included
- => community needs to work on robust modelling (more discussion in breakout session)

4. Hybrid Suspensions

• Hybrid suspensions are those which utilise silica fibres but with a silicon test mass (e.g. G1500312-v1)

Silica has broad dissipation peak at low temperature. But can you still benefit from

lower temperature operation

• Travaso et al., Materials Science and Engineering A 521–522 (2009) 268–271

 $\lambda = 1550 - 1700 \text{ nm}$

4. Hybrid Suspensions

Similar to aLIGO performance until 240K, but then worse performance than aLIGO

see talk by Marielle van Veggel (breakout session)

$$\phi_{\text{thermoelas tic}} = \frac{YT}{\rho C} \left(\alpha - \sigma_o \frac{\beta}{Y} \right)^2 \left(\frac{\omega \tau}{1 + (\omega \tau)^2} \right)$$

- aLIGO uses thermoelastic cancellation to meet 10Hz requirement
- For cold silica, need to increase fibre diameter to maintain cancellation=> dilution gets worse
- T<240K, thermoelastic dominates until much lower temperature=> this pushes up thermal noise
- Challenges also with jointing materials with different CTE=>induced stress

Summary

 There are a variety of suspension topologies which improve thermal noise performance

Parameter	High stress (e.g. A+)	Longer suspension (e.g. A+, Explorer)	Cold suspension (e.g. Voyager)	Hybrid suspension
10Hz improv.	×1.25	×2-3	×8 (Voyager), ×60 (ET-LF)	Not better than ×1.04
Hardware changes	None	modest-significant	significant	significant
Bounce mode	6Hz	5Hz	21Hz	6Hz
Violin mode	680Hz	370Hz	300Hz	680Hz
Stress	1.5GPa	1.5GPa	350MPa ⁽¹⁾	1.5GPa
Readiness	<1 year	≈2-3 year	≈3-5 years	≈3-5 years

- (1): grown fibre tensile stresses will likely be higher
- To understand full benefit need to include quantum noise and Newtonian noise