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Abstract

Current aLIGO (Advanced Laser Interferometer Gravitational-Wave Observatory)
suspensions and test masses are built from a fused silica substrate. In an effort to
further increase detector sensitivity in the mid LIGO frequency band, which is cur-
rently limited by thermal noise, cryogenic silicon has become a candidate for the next
generation of detector suspensions and test masses due to its excellent mechanical and
optical properties. The fluctuation-dissipation theorem links microscopic thermal noise
fluctuations with macroscopic material damping, which in turn motivates the study of
damping mechanisms in silicon structures. In this project we demonstrate and as-
sess several methods for measuring the quality factor of silicon cantilevers, including a
continuous measurement technique capable of measuring the quality factor of several
resonant modes simultaneously. We also investigate the effects of parameters such as
temperature, cantilever geometry, and surface treatments on the quality factor with
the goal of informing future detector suspension designs.

1 Introduction

LIGO (Laser Interferometer Gravitational-Wave Observatory) is a massive physics experi-
ment designed to detect gravitational waves originally predicted by Einstein’s general theory
of relativity in 1916. Each detector is essentially a Michelson interferometer. As gravitational
waves pass through the detectors, they distort local space-time and change the effective path
length difference between the two perpendicular arms of the interferometer. This creates a
relative phase shift between the two beams and allows for constructive interference at the
photodiode detector, resulting in a measureable signal that indicates the presence of grav-
itational waves. Two independent detectors have been built and operated in Livingston,
Louisiana and Hanford, Washington. The second generation of LIGO detectors, Advanced
LIGO (aLIGO), have been constructed and are currently being commissioned to optimize
sensitivity. The first data run of aLIGO is scheduled to begin in Fall 2015.

Research has already begun concerning the third generation of LIGO detectors. There are
many different sources of noise that limit the precision of the experiment, such as shot noise,
seismic vibrations, and thermal noise. In the frequency band relevant for the detection of
gravitational waves ( 10-100Hz), thermal noise in the test masses and suspensions is currently
a major factor limiting precision. The aLIGO test masses and suspensions are made of a
fused silica material. Cryogenic silicon is now being considered as an alternative construction
material for the next generation of LIGO detectors in order to further reduce thermal noise
and increase sensitivity in the low frequency band of interest [1].

Thermal noise can be very difficult to measure directly. However, the fluctuation-dissipation
theorem relates the dissipation of a perturbed system to the thermal fluctuations of the
system at equilibrium. This means that the mechanical dissipation of the material can
be studied instead, and this is usually a much easier approach in practice. Previous work
has been done investigating the quality factor of thin silicon flexures through ringdown
measurement techniques [2, 3]. This project focuses on both ringdown measurements and
more advanced techniques such as continuous measurements using feedback control loops.
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2 Driven, Damped Oscillators

An externally driven oscillator with linear damping is most commonly modeled as the dif-
ferential equation:

mẍ+ bẋ+ kx = fext (1)

where m is the mass of the oscillator, b is the damping coefficient, and k is the restorative
spring constant. This differential equation is easy to solve in the frequency domain by taking
the Laplace transform:

ms2X(s) + bsX(s) + kX(s) = Fext(s) (2)

The transfer function of the system is defined as the ratio of X(s)/Fext(s):

H(s) =
X(s)

Fext(s)
=

1

ms2 + bs+ k
(3)

The system acts as a second order low pass filter. Our resonators have very small dissipation,
so we focus on the case of underdamped motion, where b2/4km� 1. It is also convenient to
introduce the three terms γ = b/m (damping ratio), ω0 =

√
k/m (natural frequency), and

τ = 2/γ (characteristic time). In this regime, the two poles of the transfer function are at:

s =
−γ
2
± i

√
ω2
0 − γ2/4 (4)

The maximum value of |H(iω)| is at the frequency ωmax =
√
ω2
0 − γ2/2. Taking the same

underdamped limit above, the γ2 term is negligible so ωmax ≈ ω0. A plot of the transfer
function with normalized frequency is shown in Figure 1 below, with γ = 0.05:

Figure 1: Oscillator Transfer Function
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The quality factor Q of the resonator is defined as Q = ω0/∆, where ∆ is the full width half
max of the transfer function peak. From this definition, we have:

Q = ω0/γ =
ω0τ

2
(5)

The impulse response of the system can be found by taking the inverse Laplace transform
of the transfer function:

x(t) = e−t/τ sin (t
√
ω2
0 − γ2/4) (6)

where again the γ2 term can be safely ignored, so the final form of the impulse response is:

x(t) = e−t/τ sin (ω0t) (7)

This is simply a damped sinusoid, and an example trace of an underdamped oscillator is
shown below:

Figure 2: Oscillator Impulse Response

3 Internal Damping

Equation 1 is not the only way to model a damped system. Internal damping within materials
is frequently described using a complex spring constant k [4]. In this model, the equation of
motion becomes:

mẍ+ k(1 + iφ)x = fext (8)

where φ(ω) is called the loss angle. The loss angle represents the phase lag between a sinu-
soidal restorative force and the resulting sinusoidal displacement. It can be shown that the
oscillator loses a fraction 2πφ of its kinetic energy per cycle by intergrating the work done by
the restorative force over a single displacement period. Again taking the Laplace transform
and setting the two different parametrizations equal to each other yields the expression:

γ(ω) =
ω2
0φ

ω
(9)
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The quality factor is only defined on resonance ω = ω0, so:

Q =
1

φ(ω0)
=
ω0τ

2
(10)

This relationship forms the motivation for studying the decay time τ of the oscillator. By
measuring τ we can calculate the loss φ, which then tells us about the thermal noise of the
resonator through the fluctuation-dissipation theorem.

4 Experimental Setup

Our lab has two vacuum chambers used for testing resonators. The smaller chamber is used
as a prototyping stage where quick testing can be performed on new cantilever designs. The
larger chamber is a cryostat used for making measurements at extremely low temperatures
using liquid nitrogen and liquid helium. The cryostat also contains the electronics necessary
for making continuous Q measurements.
The silicon cantilever is mounted on one end using a stainless steel clamp and the other
end is driven using an electrostatic driver (ESD). Different clamps are used depending on
the cantilver geometry. The cantilever displacement is measured by sending a HeNe laser
beam through a window in the cryostat. After the beam is reflected off of the cantilever, it
returns to a calibrated quadrant photodiode which measure the position of the beam which
is proportional to the cantilever displacement. Additional components in the system include
a power resistor used to control resonator temperature and a polyether ether ketone (PEEK)
base underneath the clamp for insulation from the cold plate. A SolidWorks model of the
experimental setup is shown below:

Figure 3: SolidWorks Experiment Model
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The following picture shows a different clamp used for rectangular cantilevers.

Figure 4: Actual Experimental Assembly

5 Cantilever Designs

We focus our analysis on three silicon cantilever designs. The first is a Glasgow-style can-
tilever received from a group in Taiwan. Previous measurements indicate that this is the
highest quality resonator of the three, most likely due to a combination of better wafer quality
and geometry favorable for minimum clamping loss. The dimensions are shown below:

Figure 5: Taiwan Cantilever

We also study a barbell-style cantilever which has a rectangular shape with a thinner section
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in the middle:

Figure 6: Painter2 Cantilever

The entire cantilever is 5cm long and 1cm wide. The two thicker end sections have a thick-
ness of 650µm and the thinner middle section is 250µm thick. The inner section was etched
using a piranha solution. Both the Taiwan and Painter2 resonators are mounted in a retect-
angular clamp.

Lastly we have a pinwheel style resonator that has four cantilever arms of different lengths.
This resonator is mounted on a radially symmetric post for measurements. All dimensions
shown below are in inches:
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Figure 7: Pinwheel Cantilever

6 Measurement Techniques

6.1 Ringdown Method

In the ringdown experiment we determine the Q factor and loss angle of a thin silicon
cantilever by measuring the time constant τ of a damped sinusoidal amplitude signal. The
general data analysis procedure consists of taking a fourier transform of the amplitude signal
and then bandpass filtering around the resonant frequency of the oscillator. An exponential
curve can then be fitted to the filtered time domain signal in order to estimate the decay
time τ . Several plots outlining this procedure are shown in Figure 8 below:
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Figure 8: Data Analysis Procedure. Cantilever displacement data is taken from a quadrant
photodiode and bandpass filtered around the resonant mode frequency. An exponential curve
is then fit to the filtered data in order to estimate the characteristic decay time τ .

In the example analysis above, the Q was determined to be ≈ 17, 755 with ω0/2π = 143.9Hz.
This measurement was performed on the fundamental Painter2 cantilever mode at room tem-
perature.

6.2 Continuous Method

In addition to the ringdown method described above, we also utilize a previously developed
continuous measurement technique to calculate the Q of our resonators. The continuous
measurement technique employs more advanced control systems such as a phase-locked loop
(PLL) and amplitude-locked loop (ALL) in order to drive the oscillator under test (OUT)
at a constant amplitude. A simple block diagram of the system is shown below:
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Figure 9: Continuous Measurement Block Diagram

A quadrant photodiode acts as the sensor in our current setup, measuring the relative dis-
placement of the cantilever. From this signal we bandpass filter around the modes resonant
frequency ω0 and send the signal to the ALL and PLL. The PLL first differentiates the signal,
producing a 90 degree phase shift. The signal is then amplified and sent through a saturation
block where it becomes a square wave. Finally the signal is again bandpass filtered around
ω0 to produce a constant amplitude sine wave phase shifted 90 degrees ahead of the original
displacement signal. The ALL works by taking the root mean square of the displacement
signal and comparing the result to an amplitude set point c. The resulting error signal is
then amplified by gain H and mixed with the PLL output to produce a drive signal for the
actuator.
In the limit of high open loop gain where ωU � τ−1 it can be shown that [6]:

φ = Q−1 =
2ωU
cHUω0

〈a〉 (11)

Where a is the control output of H, ωU = |SHUA|
2ω0

is the unity gain frequency (UGF), and
HU is the feedback gain evaluated at the UGF. Angle brackets indicate a time average. The
frequency ω0 can be easily calculated and the remaining parameters can be measured from
information required to maintain the control loops.

This measurement technique allows for a continuous measurement of the Q of the resonator,
which naturally allows for other parameters such as temperature or amplitude to be swept
during the measurement process in order to determine the effect on φ. These are important
factors when considering clamp design and isolation schemes. It can also be shown that
measurements using this technique have a constant signal-to-noise ratio (SNR) since the os-
cillator is held at a constant amplitude, while the SNR decreases over time with the ringdown
method. The continuous method is also useful for measuring very high Q oscillators, where
the ringdown decay time may be impractical if not impossible to measure directly.

We have demonstrated the ability to measure different modes simultaneously using this
method. However, we are often limited by the actuator gain A due to the physical setup of
the experiment. The placement of our actuator, the ESD, heavily influences the modes we
are able to excite based on how close the nodes of the particular mode are to the ESD active
area. We are also unable to significantly excite torsional modes.
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7 Mechanical Losses in Silicon

Mechanical losses in solids come from a variety of different dissipation mechanisms. These
include processes such as phonon-phonon loss, surface loss, thermoelastic loss, and bulk loss.
We expect thermoelastic loss and surface loss to be significant loss mechanisms due to our
silicon resonator geometry. Various other dissipation processes such as gas damping are
inevitably present in our system, but should be negligible compared to other losses.

7.1 Thermoelastic Loss

Thermoelastic loss occurs when a solid is bent. As certain local regions are compressed
they heat up, while stretched regions are cooled (assuming a positive coefficient of thermal
expansion). This creates temperature gradients in the material. Heat fluxes driven by the
temperature gradient irreversibley dissipate energy, thus causing loss. Since thermoelastic
loss is highly dependent on the material coefficient of thermal expansion, cryogenic silicon
naturally becomes a good material choice for high quality mechanical systems due to its
vanishing coefficient of thermal expansion at 124K.

For isotropic materials in pure bending modes, the thermoelastic loss φTE is given by the
equation [5]:

φTE =
α2Y T

ρCp

ωτ

1 + ω2τ 2
(12)

where α is the coefficient of thermal expansion, Y is Young’s modulus, T is the temperature,
ρ is the material density, Cp is the heat capacity, and ω is the angular frequency of the
particular bending mode. The additional time constant τ is defined as:

τ =
ρCpt

2

πκ
(13)

where t is the thickness of the resonator and κ is the thermal conductivity. Figure 10
below shows several plots of the thermoelastic loss as a function of temperature and angular
frequency. A thickness t = 50µm is assumed:

page 11



LIGO-E1500247–v1

Figure 10: Thermoelastic Loss as a function of temperature and mode frequency. The sharp
drop in φ at T = 124K corresponds to when α, the thermal expansion coefficient of silicon,
goes to zero.

Using 12, we predict a Q ≈ 50, 000 for rectangular cantilevers close to our geometry. This
value is much higher than both our experimental data and COMSOL FEA modeling which
are shown below, indicating that thermoelastic loss probably isn’t the limiting factor in our
system.

Table 1: Thermoelastic Loss in Silicon Pinwheel
Pinwheel Arm Length Eigenfrequency (Hz) Q (ringdown method) COMSOL Predicted Q
2.4′′ 184 2,260 29,583
2.2′′ 228 — 23,103
2.0′′ 294 2,300 17,995
1.8′′ 392 1,000 12,875

The COMSOL predicted Q is much lower than the theoretical equation because the COM-
SOL model also considers thermoelastic loss in the clamp and washers. Thermoelastic loss
was modeled in COMSOL by simulating temperature gradients caused by streching and
squeezing in the cantilever. An example of temperature analysis is shown below using the
fundamental mode of the Painter2 cantilever:
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(a) Painter2 Cantilever Top (b) Painter2 Cantilever Bottom

Figure 11: The models above represent relative heating in the cantilever, from which ther-
moelastic loss is calculated. Red represents warmer, compressed regions while blue represents
cooler, stretched regions.

7.2 Clamp Design and Clamp Loss Simulations

We are never truly measuring the cantilever loss in any of our experiments because the
cantilever isn’t a closed system fixed to an infinitely stiff anchor. Our measured loss is an
aggregate of losses in the cantilever, clamp, PEEK base, and even the cyrostat itself. Losses
in the clamp have been significant in previous experiments, so optimizing the clamp design
to minimize loss is an important task. The φ we actually measure can be estimated with the
equation:

φmeasured ≈ φSi +
Eclamp
Etotal

φclamp +
EPEEK
Etotal

φPEEK + ... (14)

Where E is the total strain energy stored in the particular component. This formula provides
a useful criterion for estimating the merit of new clamp designs.

A new clamp model was recently designed for the next series of quality factor measurements.
Major changes from the previous model include a much thicker diameter and a lip to constrain
the sapphire washers and pinwheel cantilever itself in an effort to decrease clamp loss. The
design can be seen below:
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Figure 12: New Clamp Design

In order to test the new clamp design we created a COMSOL model of the system to calculate
the strain energy stored in each component for the first several modes of the longest (2.4in)
pinwheel cantilever. The model and results are displayed below:

Figure 13: COMSOL Model of 2.4′′ Cantilever, Fundamental Mode
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Table 2: Elastic Strain Energy Ratio
Eigenfrequency (Hz) Epinwheel (arb. unit) Eclamp (arb. unit) Ratio
161 3016 3.4 1.1e-3
1009 120264 139 1.2e-3
1449 212434 160 0.8e-3

The low strain energy ratios indicate that energy leakage into the clamp shouldn’t be a
significant factor in our measurements.

7.3 Surface Loss

Surface loss effects might also be a significant contribution to the net loss of our resonators.
These effects are not well understood and may be influenced by things like surface roughness,
local lattice imperfections, and thin film deposits from other materials. We experimented
with surface loss simulations in COMSOL by adding thin, lossy layers to the surface of our
cantilever models. The following table shows the computational results of adding 19µm lossy
surface layers to the 2.4in pinwheel arm, along with experimental data:

Table 3: Surface Loss in Silicon Pinwheel
Eigenfrequency (Hz) Q (ringdown method) Bulk Loss Surface Loss COMSOL Predicted Q
161 2,260 2e-5 9e-4 2,230
1009 1,260 1e-4 9e-4 2,044
1449 3,600 8e-6 9e-4 2,280

These simulations closely match our experimental results and may indicate that there is
considerable surface loss in our system. With these results in mind, we imaged the surface
of the Taiwan cantilever using a USB microscope.

(a) (b)

Figure 14: Taiwan Cantilever Surface
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Although it is difficult to make quantitative observations, it is clear that the cantilever surface
is not perfectly smooth. In an effort to improve the appearance of the surface, we cleaned
the cantilever with isopropyl and again imaged the surface.

(a) (b)

Figure 15: Cleaned Taiwan Cantilever Surface

Large surface imperfections are clearly visible even after the cleaning. While there are no
immeadiate remedies for this problem, these results do indicate that we may be limited by
lossy surface effects. Surface deformities also appear to grow worse over time since we tend to
measure a decreasing Q the more we handle and reclamp the cantilevers. We will continue to
explore better manufacturing, etching, and cleaning techniques in order to minimize surface
losses.

8 Future Work

We are going to continue adjusting the continuous Q measurement system until we are able
to reliably and robustly measure the Q of the first several oscillator modes simultaneously.
This will involve tweaking control parameters and implementing additional filtering so that
mode coupling is minimized.
The temperature sensor in the cryostat has recently been brought back into commission.
With the sensor functional we will be able to accurately measure the Q of our cantilevers at
cyrogenic temperatures. This will be especially useful in determining whether or not we are
limited by thermoelastic loss.
A larger cryogenic experiment is also currently under construction. Once the optimal silicon
flexure design has been attained, it will be incorporated into the other experiment. The goal
of this larger experiment is to directly measure the thermal noise in thin silicon structures by
locking a laser to two separate cavities. Each cavity consists of a static mirror and a mirror
attached to a silicon structure. Thermal noise can then be measured interferometrically by
looking at the beat note formed by the two locked laser beams. The experiment is well into
assembly; most optical and electronic systems have been set up.

page 16



LIGO-E1500247–v1

List of Figures

1 Oscillator Transfer Function . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Oscillator Impulse Response . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3 SolidWorks Experiment Model . . . . . . . . . . . . . . . . . . . . . . . . . . 5

4 Actual Experimental Assembly . . . . . . . . . . . . . . . . . . . . . . . . . 6

5 Taiwan Cantilever . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

6 Painter2 Cantilever . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

7 Pinwheel Cantilever . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

8 Data Analysis Procedure. Cantilever displacement data is taken from a quad-
rant photodiode and bandpass filtered around the resonant mode frequency.
An exponential curve is then fit to the filtered data in order to estimate the
characteristic decay time τ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

9 Continuous Measurement Block Diagram . . . . . . . . . . . . . . . . . . . . 10

10 Thermoelastic Loss as a function of temperature and mode frequency. The
sharp drop in φ at T = 124K corresponds to when α, the thermal expansion
coefficient of silicon, goes to zero. . . . . . . . . . . . . . . . . . . . . . . . . 12

11 The models above represent relative heating in the cantilever, from which
thermoelastic loss is calculated. Red represents warmer, compressed regions
while blue represents cooler, stretched regions. . . . . . . . . . . . . . . . . . 13

12 New Clamp Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

13 COMSOL Model of 2.4′′ Cantilever, Fundamental Mode . . . . . . . . . . . . 14

14 Taiwan Cantilever Surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

15 Cleaned Taiwan Cantilever Surface . . . . . . . . . . . . . . . . . . . . . . . 16

List of Tables

1 Thermoelastic Loss in Silicon Pinwheel . . . . . . . . . . . . . . . . . . . . . 12

2 Elastic Strain Energy Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Surface Loss in Silicon Pinwheel . . . . . . . . . . . . . . . . . . . . . . . . . 15

References

[1] A.V. Cumming, L. Cunningham, G. D. Hammond, K. Haughian, J. Hough, S. Kroker,
I. W. Martin, R. Nawrodt, S. Rowan, C. Schwarz, and A. A. van Veggel, Silicon mirror
suspensions for gravitational wave detectors. Quantum Grav. 31 025017 (2013).

page 17



LIGO-E1500247–v1

[2] Edward Taylor, Nicolas Smith, Quality Factor of Crystalline Silicon at Cryogenic Tem-
peratures. LIGO Document P1300172-v1 (2013).

[3] Marie Lu, Nicolas Smith, Rana Adhikari, Zach Korth, Measuring the Quality Factor of
Cryogenic Silicon. LIGO Document T1400668-v1 (2014).

[4] P.R. Saulson, Thermal Noise in mechanical experiments. Phys. Rev. D 42, 2437 (1990).

[5] R. Nawrodt, C. Schwarz, S. Kroker, I. W. Martin, F. Brckner, L. Cunningham, V. Groe,
A. Grib, D. Heinert, J. Hough, T. Ksebier, E. B. Kley, R. Neubert, S. Reid, S. Rowan, P.
Seidel, M. Thrk, A. Tnnermann, Investigation of mechanical losses of thin silicon flexures
at low temperatures. Quantum Grav. 30, 115008 (2013).

[6] Nicolas Smith, A technique for continuous measurement of the quality factor of
mechanical oscillators. Review of Scientific Instruments 86, 053907 (2015); doi:
10.1063/1.4920922

page 18


	Introduction
	Driven, Damped Oscillators
	Internal Damping
	Experimental Setup
	Cantilever Designs
	Measurement Techniques
	Ringdown Method
	Continuous Method

	Mechanical Losses in Silicon
	Thermoelastic Loss
	Clamp Design and Clamp Loss Simulations
	Surface Loss

	Future Work

