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1 Introduction

LIGO (Laser Interferometer Gravitational-Wave Observatory) is a massive physics experi-
ment designed to detect gravitational waves originally predicted by Einstein’s general theory
of relativity in 1916. Each detector is essentially a Michelson interferometer. As gravitational
waves pass through the detectors, they distort local space-time and change the effective path
length difference between the two perpendicular arms of the interferometer. This creates a
relative phase shift between the two beams and allows for constructive interference at the
photodiode detector, resulting in a measureable signal that indicates the presence of grav-
itational waves. Two independent detectors have been built and operated in Livingston,
Louisiana and Hanford, Washington. The second generation of LIGO detectors, Advanced
LIGO (aLIGO), have been constructed and are currently being commissioned to optimize
sensitivity. The first data run of aLIGO is scheduled to begin in Fall 2015.

Research has already begun concerning the third generation of LIGO detectors. There are
many different sources of noise that limit the precision of the experiment, such as shot noise,
seismic vibrations, and thermal noise. In the frequency band relevant for the detection of
gravitational waves ( 10-100Hz), thermal noise in the test masses and suspensions is currently
a major factor limiting precision. The aLIGO test masses and suspensions are made of a
fused silica material. Cryogenic silicon is now being considered as an alternative construction
material for the next generation of LIGO detectors in order to further reduce thermal noise
and increase sensitivity in the low frequency band of interest [1].

Thermal noise can be very difficult to measure directly. However, the fluctuation-dissipation
theorem relates the dissipation of a perturbed system to the thermal fluctuations of the
system at equilibrium. This means that the mechanical dissipation of the material can
be studied instead, and this is usually a much easier approach in practice. Previous work
has been done investigating the quality factor of thin silicon flexures through ringdown
measurement techniques [2, 3]. This project focuses on both ringdown measurements and
more advanced techniques such as continuous measurements using feedback control loops.

2 Driven, Damped Oscillators

An externally driven oscillator with linear damping is most commonly modeled as the dif-
ferential equation:

mẍ+ bẋ+ kx = fext (1)

where m is the mass of the oscillator, b is the damping coefficient, and k is the restorative
spring constant. This differential equation is easy to solve in the frequency domain by taking
the Laplace transform:

ms2X(s) + bsX(s) + kX(s) = Fext(s) (2)

The transfer function of the system is defined as the ratio of X(s)/Fext(s):

H(s) =
X(s)

Fext(s)
=

1

ms2 + bs+ k
(3)
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The system acts as a second order low pass filter. Our resonators have very small dissipation,
so we focus on the case of underdamped motion, where b2/4km� 1. It is also convenient to
introduce the three terms γ = b/m (damping ratio), ω0 =

√
k/m (natural frequency), and

τ = 2/γ (characteristic time). In this regime, the two poles of the transfer function are at:

s =
−γ
2
± i

√
ω2
0 − γ2/4 (4)

The maximum value of |H(iω)| is at the frequency ωmax =
√
ω2
0 − γ2/2. Taking the same

underdamped limit above, the γ2 term is negligible so ωmax ≈ ω0. A plot of the transfer
function with normalized frequency is shown in Figure 1 below, with γ = 0.05:

Figure 1: Oscillator Transfer Function

The quality factor Q of the resonator is defined as Q = ω0/∆, where ∆ is the full width half
max of the transfer function peak. From this definition, we have:

Q = ω0/γ =
ω0τ

2
(5)

The impulse response of the system can be found by taking the inverse Laplace transform
of the transfer function:

x(t) = e−t/τ sin (t
√
ω2
0 − γ2/4) (6)

where again the γ2 term can be safely ignored, so the final form of the impulse response is:

x(t) = e−t/τ sin (ω0t) (7)

This is simply a damped sinusoid, and an example trace of an underdamped oscillator is
shown below:
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Figure 2: Oscillator Impulse Response

3 Internal Damping

Equation 1 is not the only way to model a damped system. Internal damping within materials
is frequently described using a complex spring constant k [4]. In this model, the equation of
motion becomes:

mẍ+ k(1 + iφ)x = fext (8)

where φ(ω) is called the loss angle. The loss angle represents the phase lag between a sinu-
soidal restorative force and the resulting sinusoidal displacement. It can be shown that the
oscillator loses a fraction 2πφ of its kinetic energy per cycle by intergrating the work done by
the restorative force over a single displacement period. Again taking the Laplace transform
and setting the two different parametrizations equal to each other yields the expression:

γ(ω) =
ω2
0φ

ω
(9)

The quality factor is only defined on resonance ω = ω0, so:

Q =
1

φ(ω0)
=
ω0τ

2
(10)

This relationship forms the motivation for studying the decay time τ of the oscillator. By
measuring τ we can calculate the loss φ, which then tells us about the thermal noise of the
resonator through the fluctuation-dissipation theorem.
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4 Thermoelastic Loss

Mechanical losses in solids come from a variety of different dissipation mechanisms. These
include processes such as phonon-phonon loss, surface loss, and bulk loss. We expect ther-
moelastic loss to be a significant loss mechanism due to our silicon resonator geometry.
Thermoelastic loss occurs when a solid is bent. As certain local regions are compressed
they heat up, while stretched regions are cooled (assuming a positive coefficient of thermal
expansion). This creates temperature gradients in the material. Heat fluxes driven by the
temperature gradient irreversibley dissipate energy, thus causing loss. Since thermoelastic
loss is highly dependent on the material coefficient of thermal expansion, cryogenic silicon
naturally becomes a good material choice for high quality mechanical systems due to its
vanishing coefficient of thermal expansion at 124K.

For isotropic materials in pure bending modes, the thermoelastic loss φTE is given by the
equation [5]:

φTE =
α2Y T

ρCp

ωτ

1 + ω2τ 2
(11)

where α is the coefficient of thermal expansion, Y is Young’s modulus, T is the temperature,
ρ is the material density, Cp is the heat capacity, and ω is the angular frequency of the
particular bending mode. The additional time constant τ is defined as:

τ =
ρCpt

2

πκ
(12)

where t is the thickness of the resonator and κ is the thermal conductivity. Figure 3 be-
low shows several plots of the thermoelastic loss as a function of temperature and angular
frequency. A thickness t = 50µm is assumed:

Figure 3: Thermoelastic Loss
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5 Ringdown Measurements

In the ringdown experiment we determine the Q factor and loss angle of a thin silicon can-
tilever by measuring the time constant τ of a damped sinusoidal amplitude signal. The
cantilever is mounted on one end using a stainless steel clamp and the other end is driven
using an electrostatic driver (ESD). The entire system is tested in a cryostat where is oper-
ates in vacuum at cryogenic temperatures using liquid nitrogen to cool the enclosure. The
cantilever displacement is measured by sending a HeNe laser beam through a window in the
cryostat. After the beam is reflected off of the cantilever, it returns to a calibrated quadrant
photodiode which measure the position of the beam which is proportional to the cantilever
displacement. Additional components in the system include a power resistor used to control
resonator temperature and a PEEK base underneath the clamp for insulation from the cold
plate. The (old) experimental setup is shown below:

Figure 4: Experimental Assembly

So far we have analyzed two different cantilevers using the ringdown method. The general
data analysis procedure consists of taking a fourier transform of the amplitude signal and
then bandpass filtering around the resonant frequency of the oscillator. An exponential curve
can then be fitted to the filtered time domain signal in order to estimate the decay time τ .
Several plots outlining this procedure are shown in Figure 5 below:

In the example analysis below, the Q was determined to be ≈ 28, 000 with ω0/2π = 144.6Hz.
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Figure 5: Data Analysis Procedure
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6 Clamp Design

We are never truly measuring the cantilever loss in any of our experiments because the
cantilever isn’t a closed system fixed to an infinitely stiff anchor. Our measured loss is an
aggregate of losses in the cantilever, clamp, PEEK base, and even the cyrostat itself. Losses
in the clamp have been significant in previous experiments, so optimizing the clamp design
to minimize loss is an important task.

A new clamp model was recently designed for the next series of quality factor measurements.
Major changes from the previous model include a much thicker diameter and a lip to constrain
the sapphire washers and pinwheel cantilever itself in an effort to decrease clamp loss. The
design can be seen below:

Figure 6: New Clamp Design

7 Future Work

We are going to continue testing different surface treatments and geometries of silicon flex-
ures in order to find the optimal cantilever design. This will involve working with other
applied physics groups on campus that have experience with the different surface treatment
techniques that we require. Different clamp assemblies may also need to be developed and
tested if our measurements still indicate that we are limited by clamp loss. Once we begin to
see significant improvements in the quality factor of the resonators, we will begin to measure
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loss using more advanced systems such as the continuous measurement method discussed
previously.

Finite element analysis techniques through COMSOL may also be used in order to model
the loss mechanisms of different silicon cantilever systems. This will involve learning the
FEA method and becoming familiar with COMSOL software.

A larger cryogenic experiment is also currently under construction. Once the optimal silicon
flexure design has been attained, it will be incorporated into the other experiment. The goal
of this larger experiment is to directly measure the thermal noise in thin silicon structures by
locking a laser to two separate cavities. Each cavity consists of a static mirror and a mirror
attached to a silicon structure. Thermal noise can then be measured interferometrically by
looking at the beat note formed by the two locked laser beams. The experiment is well into
assembly; most optical and electronic systems have been set up.
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