
LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY
- LIGO -

CALIFORNIA INSTITUTE OF TECHNOLOGY
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Technical Note LIGO-T1500123–v1 2015/08/04

Detector Characterization of the

LIGO 40m Prototype

Interferometer

Eve Chase
Mentors: Koji Arai and Maximiliano Isi

California Institute of Technology Massachusetts Institute of Technology
LIGO Project, MS 18-34 LIGO Project, Room NW22-295

Pasadena, CA 91125 Cambridge, MA 02139
Phone (626) 395-2129 Phone (617) 253-4824

Fax (626) 304-9834 Fax (617) 253-7014
E-mail: info@ligo.caltech.edu E-mail: info@ligo.mit.edu

LIGO Hanford Observatory LIGO Livingston Observatory
Route 10, Mile Marker 2 19100 LIGO Lane

Richland, WA 99352 Livingston, LA 70754
Phone (509) 372-8106 Phone (225) 686-3100

Fax (509) 372-8137 Fax (225) 686-7189
E-mail: info@ligo.caltech.edu E-mail: info@ligo.caltech.edu

http://www.ligo.caltech.edu/

http://www.ligo.caltech.edu/


LIGO-T1500123–v1

Abstract

The Advanced Laser Interferometer Gravitational-Wave Observatory (aLIGO) de-
tectors will come online in the fall of 2015 with the goal of providing the first direct
detection of gravitational waves. Detector characterization techniques, focused on the
reduction of noise, are imperative to analyze and suppress noise to provide sufficient
sensitivity for the detection of gravitational waves. Caltech houses the LIGO 40 meter
prototype interferometer, a copy of the LIGO interferometers, providing the perfect
playground to test and design novel detector characterization techniques for later im-
plementation at the main sites. While summary pages, websites showing the state of
the detector in real-time, are used to monitor the main detectors, the 40 meter proto-
type lacks many of these low-latency monitoring features. We incorporate new features
into the 40 meter prototype summary pages in the hope of benefiting the entire LIGO
community by providing real-time access to detector monitoring tools. Additionally, we
develop basic tools to distinguish between gravitational wave signals and non-Gaussian
noise sources, which are often misidentified as false-positive gravitational wave signals.
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1 Introduction

Einstein’s General Theory of Relativity propelled a scientific hunt for the detection of gravi-
tational waves. Einstein’s equations establish the dynamics of space-time, a four-dimensional
mathematical model combining the dimensions of space and time. General relativity predicts
the existence of gravitational waves, propagating ripples in space-time. Gravitational waves
are transverse waves, predicted to travel at the speed of light, produced by the change in
quadrupole moment of mass distribution [1]. Nearly a century after their inception, gravi-
tational waves have yet to be directly detected.

A worldwide network of ground-based interferometers has been constructed to provide the
first direct detection of gravitational waves. The Laser Interferometer Gravitational-Wave
Observatory (LIGO), consisting of detectors in Livingston, Louisiana and Hanford, Wash-
ington, recently underwent years of upgrades to provide greater sensitivity and increase
the likelihood of detecting gravitational waves. A gravitational wave detector is a massive
Michelson interferometer, with arm lengths of up to 4km (Figure 1) [3]. Laser light is split
and sent down two orthogonal arms of equal length; the light is reflected at the end of the
arms and then recombined. When a gravitational wave passes through an interferometer, a
slight change in arm length will occur, resulting in a phase difference in laser light split down
each arm. Gravitational wave signals are extracted from this resultant phase difference.

Figure 1: Basic interferometer design (LIGO [2])

Detecting a gravitational wave is difficult and requires impeccably sensitive instrumentation
and detection abilities, in an attempt to detect length variations of only 10−18 m, smaller
than a proton [3]. Noise makes detection even more difficult; everything in the interferometer
system is moving or fluctuating, such as the mirror position, laser frequency, laser intensity,
arm resonant condition, and many more factors resulting in a substantial number of noise
sources. Gravitational wave detection is a battle against noise, and detector characterization
spearheads this battle. Through detector characterization, we analyze interferometer output
and noise sources for certain periods of time to characterize the nature of noise, in hopes
of eliminating it from the data supply. Gravitational waves cannot be detected with LIGO
without strong detector characterization techniques.

As Advanced LIGO becomes operational in late 2015 [4], the implementation of advanced
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detector characterization techniques is imperative to utilize the increased sensitivity for direct
detection of gravitational waves. I am pleased to have devoted my summer to LIGO detector
characterization while it serves a vital role in the effort to detect gravitational waves.

My summer project consists of two main parts, outlined in this paper. As described in
Section 2, I am updating the LIGO summary pages which accomplish detector monitoring
tasks. Subsequently, I hope to characterize non-Gaussian noise through various statistical
methods, as described in Section 3. I provide a timeline for the past and future work
in Section 5. Relevant statistical concepts are listed in Appendix A, and instructions for
accessing and editing the summary pages are found in Appendix B.

2 Summary Pages

In addition to the two large LIGO detectors in Washington and Louisiana, Caltech houses
a prototype detector [5]. The prototype detector, with 40m long interferometer arms, has a
similar configuration to the larger detectors but is open to modification and testing of new
design implementations (Figure 2). The 40m prototype detector is the perfect playground
for detector characterization experimentation. By implementing new designs at the 40m
detector instead of the LIGO sites, we are able to provide novel improvements to all LIGO
detectors without interfering with data collection at the sites. The prototype consists of
several subsystems which monitor the functionality of the detector, enumerated in Table 1
[6, 7, 8]. By frequently collecting data from the subsystems, we provide a means of monitoring
the detector.

Figure 2: Schematic representation of the 40m prototype detector. A length of 40m separates
the input mirror (ITM) and end mirror (ETM) [6] (Ward et al. [5]).

LIGO summary pages provide an accessible method to monitor the detectors in real time
on-line [9]. Summary pages include dozens of plots monitoring detector status from seismic

page 4



LIGO-T1500123–v1

Table 1: 40m Detector Subsystems
Name Subsystem Details

Length Sensing and Control (LSC) Mirror position control and
gravitational wave signal channel.

Angular Sensing and Control (ASC) Mirror angular control.

Arm Length Stabalization (ALS) Monitor x and y arm length.

Pre-Stabilized Laser (PSL) Optical cavities for laser stabilization in
frequency and spacial distribution.

Input and Output Optics (IOO) Similar to PSL.

Suspensions (SUS) Sensors for mirror positions and
angles. Optical lever system which

provides additional angular
sensing signals.

Physical Environmental Sensors (PEM) Seismic and acoustic noise.

Vacuum System (VAC) Vacuum status monitoring.

activity, to glitches, and to lock status. Summary pages include ASD spectra displaying
gravitational wave amplitude spectral density over frequency [10]. Summary pages also
provide time-frequency event plots representing signal-to-noise ratio (SNR) for several event
triggers [10]. A screenshot of summary pages is shown in Figure 3. While the Hanford and
Livingston detectors utilize summary pages, the 40m detector has few features implemented
on the summary pages and many of the already-existing plots are flawed. The 40m summary
pages are far behind the quality of the Livingston and Hanford summary pages and lack
much of the information represented in the latter two [9, 11, 12]. We hope to provide a
legible, informative summary page interface to improve upon the currently existing channel
visualization for the 40m prototype.

Implementation of summary pages for the 40m prototype requires careful configuration of
many channels from many subsystems of the prototype. We analyze each channel for a
set period of time to determine the nature of each signal. While checking the behavior of
signals, we may reveal problems with the functionality of specific subsystem of the detector,
contributing to detector improvement.

Summary pages are produced using the GWsumm toolbox, which is based on the GWpy
Python package which provides tools to load, assess, and plot LIGO data. GWsumm scripts
can provide plots for data channels and associated HTML to post the plots on the summary
page website. A significant portion of my summer is devoted to characterizing data channels
for the 40m detector and implementing them into the summary page system.
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Figure 3: Screenshot of a summary page monitoring the Hanford detector [12].

2.1 Improvements to Existing Plots

While the 40m detector summary pages provide a basic foundation to reach the level of effec-
tive data display and quality of information as the Livingston and Hanford summary pages,
many necessary features have yet to be implemented. Several plots are already available on
the summary pages, including those for IOO, PEM, PSL, SUS, and VAC subsystems, but
many of these plots require improvements. As many plots lacked titles and axis labels, I
began my summer work with a simple introduction to the code behind the summary pages
with the addition of improved titles and axis labels. Through this work, I was able to gain fa-
miliarity with the code and ensure that my changes appeared on the summary pages website
in real time.

In addition to providing cosmetic adjustments to either the dearth or flaws in labels, I altered
the range of axes in many cases. Occasionally, axis ranges that fail to appropriately display
the necessary data are selected. I determined appropriate axis ranges by observing past data
from several months at a time on the DataViewer program present at the 40m detector, and
I implemented appropriate axis ranges into the summary pages.

There are several periods of time during which no data is displayed on the summary pages,
causing confusion as to what is causing the break in data and uncertainty if data is not being
collected or if the data collected is not within the axis ranges of the summary page plots. By
monitoring the channels in question on DataViewer, I can analyze the cause of such breaks
in data acquisition and implement changes to the summary pages, appropriately.

We believe that the summary pages lack accurate triggering systems for certain plot ren-
dering processes. The value of certain channels determine if other channels should be
plotted in the summary pages. For example, for channels C1:LSC-XARM OUT DQ and
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C1:LSC-YARM OUT DQ to be plotted in the Arm LSC Control signals figures, C1:LSC-
TRX OUT DQ and C1:LSC-TRY OUT DQ must be higher than 0.5, thus acting as triggers.
I will implement several necessary triggers to the summary pages, if not already implemented.
Furthermore, for all existing triggers, I will provide a graphical indicator informing viewers
that data is not being represented at a certain time for specific plots.

2.2 Additions to the Summary Pages

We hope to provide useful and informative additions to the summary pages to help all users
of the 40m detector. I will speak with many of the frequent users of the 40m detector and
implement improvements to the summary pages that they view as necessary. This ensures
that we provide useful information on the summary pages.

As some interest was expressed in improving plots for suspension systems, I added plots
to these sections of the summary pages. Six suspension system optical level (OpLev) plots
already exist on the summary pages and represent optical lever fluctuations in microradians
over time for numerous channels. I produced spectra for each OpLev plot and displayed the
spectra tangentially to the already existing timeseries, to provide an easy means of visually
comparing the data.

In addition to these enumerated improvements, I am open to the possibility of more cre-
ative projects using the summary page interface. I could introduce interactive plots allowing
for such features as zooming in or scrolling through different axis ranges of the data. Fur-
thermore, I could introduce new types of plots, such as a coherogram to better display
information.

3 Non-Gaussianity Tests of Noise Sources

While not working on implementation of summary pages, I focus on noise characterization.
We explore the appearance of various noise sources in the interferometer channels and provide
additional methods to characterize noise with the predefined goal of eliminating as many
noise sources as possible from the detector.

Gravitational wave detectors are constantly inundated with noise. Noise comes in numerous
forms, such as white noise, sinusoidal, stochastic, Gaussian, and more. Sources of white
noise include quantum noise and electronic noise with broad frequency bands. Sinusoidal
noise sources such as narrow band sources and noise from power lines at 60Hz are also
present, in addition to narrow band stochastic noise sources such as thermal noise in mirror
suspension wires. Other sources of noise include seismic noise. We can categorize noise
as Gaussian or non-Gaussian, dependent on the statistical nature of the noise. Typically,
thermal and quantum noise exhibit Gaussian behavior. It is difficult to distinguish between
gravitational wave events and non-Gaussian noise, specifically in gravitational wave searches
without predefined waveforms (i.e. burst searches), thus requiring the characterization of
non-Gaussian noise to reveal true event signals [13]. By characterizing noise Gaussianity,
we can better recognize noise patterns and understand the nature of noise, leading to the
further elimination of many noise sources.
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Power spectral density (PSD) provides one means to characterize noise distributions. A PSD
is a measure of power in several frequency bans, averaged over time. Following a Fourier
transform of a timeseries x(t) we receive the following function in the frequency-domain:

x̃(f) =

∫ ∞
−∞

x(t)e−i2πftdt, (1)

where |x̃(f)|2 provides the energy spectral density. Energy spectral density follows Parseval’s
theorem, described in Appendix A. When noise extends infinitely in the time domain, we
can define the PSD [16, 17, 18]:

lim
T→∞

1

T
|x̃T (f)|2 . (2)

PSDs also follow Parseval’s theorem and correct calculation of a PSD can be confirmed using
this theorem. A PSD has units equivalent to the units of |x(t)|2 divided by Hz. Typically,
in gravitational wave data analysis, we represent our PSDs in strain /

√
Hz. This requires

us to take the square root of our PSD, which forms an amplitude spectral density (ASD).
Colloquially, ASDs are often still called PSDs, despite this change in calculation.

We calculate PSDs of interferometer signals for a given short period of time, providing
many useful applications in detector characterization. For example, PSD calculation allows
us to monitor the violin, roll, and bounce modes of the steel wires used to suspend the
interferometer’s mirrors. Each mirror has six rigid body degrees of freedom: longitudinal,
side, vertical, pitch, yaw, and roll. The resonances of each of these six modes has low
dissipation, corresponding to a long ringdown mode, or high quality factor (Q) for the
modes. Feedback damping is used to lower the Q’s for some modes, but the violin, roll, and
vertical (or bounce) modes have no such damping control and occasionally become excited
by seismic motion or cross-coupling between modes. Characterization of noise from these
three modes can be achieved through the calculation of a PSD.

By following the statistical method, enumerated in Ando et al. [13], we statistically charac-
terize Gaussianity of PSDs. Assuming we sample the detector output, v(t), in time intervals
of ∆t, the raw output data is recorded as vj = v(j∆t). From the output data, we calculate
the output power:

Pj = |vj|2 . (3)

By dividing the output data into n segments, with k data points in each segment, we define
the following quantities derived from power:

P0
∼= Pj (4)

P1 =
1

k

k∑
j=1

Pj (5)

P2 =
1

k

k∑
j=1

(Pj)
2, (6)

where P0 is the long-term average of Pj, using all data points. P1 is the first-order moment
(mean) of signal power, Pj, given for only a single data segment. Similarly, P2 is the second-
order moment (variance) of Pj, also for only a specific segment. The parameter Pj, is the
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average of Pj. If data is completely stationary, Pj is constant, resulting in a P1 equal to
P0 and P2 equal to P 2

0 for all n data segments. From these parameters, we define two
Gaussianity evaluations coefficients:

c1 =
P1

P0

− 1 (7)

and

c2 =
1

2

(P2

P 2
1

− 2
)
, (8)

which are also the first two coefficients in the Laguerre expansion of the noise power dis-
tribution (see Appendix C). It is assumed that c2 becomes constant if the signal power is
much larger than the background noise level [13]. The coefficient c1 provides a metric for
the stability of a signal, while c2 indicates non-Gaussianity, as P2

P 2
1

is related to glitchiness of

power. Using the coefficients c1 and c2, we can evaluate the Gaussianity of a PSD.

Rayleigh statistics provide another means to determine the Gaussianity of a noise distribution
[7, 14]. The Rayleigh statistic (R) provides a metric for the Gaussianity of noise through a
calculation of the ratio of standard deviation to mean of a power spectrum in a set frequency
bin:

R(f) =
σ[|x̃T (f)|2]
µ[|x̃T (f)|2]

, (9)

where σ and µ are defined in Appendix A and x̃T (f) is defined in Equation 1. The value
of R provides a numerical measure of the Gaussianity of a signal, with R = 1 representing
Gaussian noise, R < 1 representing coherent variation in the data, and R > 1 indicating
that glitchy data is present [7, 14]. The RayleighMonitor algorithm can be used to plot spec-
trograms (µ) and Rayleighgrams (R) for a visual representation of detector characterization
[14, 15].

We calculate both Rayleigh statistics and PSDs for interferometer signals at each prede-
termined frequency segment and plot PSD and R in the same figure. We are interested in
determining the relationship between Rayleigh statistics and PSDs, with a specific focus on
the Gaussianity method outlined in Ando et al. [13]. By characterizing the Gaussianity of
noise, we hope to provide a better understanding of noise sources at the interferometer and
eliminate these noise sources in data requisition.

3.1 Current Progress

I have begun calculating PSDs from previous LIGO data using a Python program. I down-
loaded an hour of Livingston S5 data from the LIGO Open Science Center as an hdf5 file.
Using the readligo module, also available at the LIGO Open Science Center, I stored this
data into a series of Python data structures. The data files include information on strain,
time, and channel information.

By plotting strain versus time, I produced a timeseries for 16 seconds of data this hour-long
period (Figure 4). The data is chaotic and conveys little information in the time-domain.
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Some oscillatory periods can be determined from this plots, but much more information is
available if we observe the same dataset in the frequency-domain.

0 2 4 6 8 10 12 14 16
Time since GPS 842657792.0

6

4

2

0

2
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8
St

ra
in

1e 17 Time Series

Figure 4: Strain versus time for 16 seconds of L1 data from S5.

We create a PSD of the dataset to provide more information about the frequency content
of the timeseries. We use the Python function, matplotlib.mlab.psd() to compute the PSD.
This function uses Welch’s average periodogram method to approximate a PSD. The time-
series is divided into several segments of length NFFT , and the fast Fourier transform (see
Appendix A) is calculated for each segment, then squared, and then averaged for all seg-
ments to produce the PSD. We define the sampling frequency to be the inverse of the time
between consecutive data sampling. The NFFT segment length is also set to this sampling
frequency value. We select a Hanning window function, which maps each segment’s values
onto the Hanning function of length NFFT . As the Hanning function eliminates datapoints
at the endpoints of segments, we define an overlap of half of NFFT which recalculates the
PSD using the same segments shifted over by half their lengths. Using this method, we
produce the PSD seen in Figure 5. This produced PSD looks very similar to that of the Liv-
ingston detector during the S5 run, with several frequency peaks appearing in the expected
locations (Figure 6). To directly compare Figure 5 and Figure 6, the y-axis of Figure 6 must
be divided by the length of the interferometer arms, 4km. We confirm the calculation of our
PSD by ensuring that Parseval’s theorem holds, by following Equation 23 in Appendix A.

We begin to explore the Gaussianity of LIGO data at individual time values by compiling
distribution statistics for a series of PSDs. We split the timeseries of Figure 4 into several
equally spaced frequency segments and calculate the individual PSD of each chunk, altering
the NFFT length accordingly. We plot the PSD produced for each segment on the same
plot and compare them (Figure 7). We provide a more quantitative metric of comparison by
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Figure 5: PSD calculated over entire timeseries dataset.

Figure 6: Published sensitivity for the LIGO detectors during the S5 run (LIGO [19]).
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calculating the mean and standard deviation of the spread in PSD values at one particular
frequency, f0. By calculating the mean at each frequency bin, we reproduce the original
PSD. In Figure 8, we plot the mean and standard deviation spread for each frequency bin.
We will continue analysis with this data set by following the methods outlined in Ando et
al. [13] to provide a statistical representation of Gaussianity in the PSD.
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Several PSDs for L1 data starting at GPS 842657792.0

Figure 7: Several PSDs calculated for equally spaced frequency segments and compiled into
one graph.

4 Conclusion

As Advanced LIGO begins to collect data, detector characterization takes a vital role in
the effort to locate gravitational wave signals in this data. It is imperative to distinguish
between gravitational wave events and non-Gaussian noise signals in order to detect gravi-
tational waves, specifically bursts [13]. The implementation of summary pages for the 40m
prototype detector benefits the entire LIGO community by providing real-time access to
detector monitoring tools for the interferometer and providing improvements to the sum-
mary pages, which may be incorporated into summary pages for the main detectors. In the
upcoming race to directly detect gravitational waves with a ground-based interferometer,
detector characterization is vital in the understanding and elimination of noise.
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Figure 8: The mean and standard deviation bands for all PSDs in Figure 7 each frequency
bin.

5 Work Timeline

A timeline for my summer work can be found in Table 2.
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Appendix A Relevant Statistical Concepts

A.1 Arithmetic Mean

The arithmetic mean represents an unweighted average of a set of n values.

µ = x =
1

n

n∑
i=1

xi (10)

A.2 Variance

Variance, σ2, measures the spread of a set of numbers.

σ2 =
1

n

n∑
i=1

(xi − µ)2 (11)

A.3 Standard Deviation

Standard deviation is the square root of variance. It represents the amount of variation in a
set of n values.

σ =

√√√√ 1

n

n∑
i=1

(xi − µ)2 (12)

A.4 Skewness

Skewness quantifies the asymmetry of a distribution. If the left side is more pronounced
than the right side, then the data set is said to have negative skewness. If the distribution is
symmetric, skewness is zero. Equations for skewness vary, and one such equation is provided
below.
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Skewness =

1
n

n∑
i=1

(xi − µ)3

σ3
(13)

A.5 Kurtosis

In addition to skewness, kurtosis provides another descriptor for the shape of a distribution.
Kurtosis is represented in many ways, of which one such equation is provided, and can be
thought of as “peakedness” of a distribution.

Kurtosis =

1
n

n∑
i=1

(xi − µ)4

σ4
(14)

A.6 RMS

The root mean square (RMS) can be calculated to represent a series of data points varying
with time. The RMS for a set of n discrete values is:

xrms =

√
1

n
(x21 + x22 + · · ·+ x2n), (15)

while the RMS for a continuous time-dependent function from the time interval T1 to T2 is

frms =

√
1

T2 − T1

∫ T2

T1

[f(t)]2dt. (16)

A.7 Fourier Transform

The Fourier transform provides a continuous Fourier series from −∞ to ∞ for a given
function. The Fourier transform of f(t) is,

g(ω) =
1

2π

∫ ∞
−∞

f(t)e−iωtdt, (17)

and the inverse Fourier transform is,

f(t) =

∫ ∞
−∞

g(ω)eiωtdω. (18)

A.8 Fast Fourier Transform

The fast Fourier transform (FFT) provides a computer algorithm for calculating a Fourier
transform. Rather than describing the mathematical formalism of a FFT, I will express its
overall function pictorially in Figure 9.
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Figure 9: The bottom plot displays the FFT of the above plot. The FFT shows that most
of the power is at frequency 4, reflecting the fact that four periods were chosen for the
calculation of the FFT [20].

A.9 Parseval’s Theorem

Parseval’s theorem illuminates the relationship between the average of the square of a func-
tion f(t) and the Fourier coefficients. Assume a function f(t) is represented by the following
Fourier series:

f(t) =
∞∑
−∞

cne
inπt/l, (19)

where cn is

cn =
1

2l

∫ l

−l
f(t)e−inπt/ldt. (20)

Parseval’s theorem then claims the following:

The average of |f(t)|2 over a period =
∞∑
−∞

|cn|2 . (21)

Parseval’s theorem can be written in several different ways including the following:∫ ∞
−∞
|x(t)|2 dt =

∫ ∞
−∞
|x̃(f)|2 df, (22)

∫ ∞
0

Sy(f)df = σ2
y (23)

where |x̃(f)|2 is the energy spectral density and Sy(f) is the power spectral density. Parseval’s
theorem can easily be related to the RMS by the inclusion of a square root.
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Appendix B How to Access the Summary Pages

The 40m detector summary pages can be viewed on https://ldas-jobs.ligo.caltech.

edu/~max.isi/summary/, which updates every 30 minutes to represent the most recent
channel outputs for the detector.

After receiving appropriate credentials, files to edit the summary pages can be found on
nodus.ligo.caltech.edu at /users/public html/gwsumm-config. All files following the pattern
c1*.ini are read by a Cron job which then applies the changes found in these files to the
summary page website. These files contain information on the channels that are represented
and the plot format that will represent the relevant information, such as spectra, timeseries,
etc.

Appendix C Laguerre Expansion

I provide a statistical background for Laguerre exponential expansions, following the method
defined in Ando et al. [13]. We define a probability density function, P (ζ), given the following
Rayleigh distribution:

Φ(ζ) = e−ζ , (24)

where ζ is a function of Gaussian variables x and y,

ζ =
1

2
(x2 + y2), (25)

related to the instantaneous power Pj normalized by P0 (see Section 3). Given that P (ζ) is
perturbed from an exponential distribution, we represent the probability density function as
a series expansion:

P (ζ) = c̄0Φ(ζ) + c̄1L1(ζ)Φ(ζ) + c̄2L2(ζ)Φ(ζ) + · · · . (26)

Ln(ζ) describes the Laguerre polynomials for ζ, following the pattern

Ln(ζ) = eζ
dn

dζn
(ζneζ). (27)

The first few Laguerre polynomials are explicitly described as L0 = 1, L1 = 1− x, and L2 =
1
2
(x2 − 4x+ 2). Laguerre polynomials satisfy a condition for orthogonality:∫ ∞

0

Lm(ζ)Ln(ζ)Φ(ζ)dζ = δmn. (28)

The coefficients c̄n can be calculated with

c̄n =

∫ ∞
−∞

Ln(ζ)P (ζ)dζ, (29)

resulting in coefficients such as c̄0 = 1, c̄1 = 1− ζ̄, and c̄2 = 1
2
(ζ̄2 − 2) .
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