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Abstract

The Advanced Laser Interferometer Gravitational-Wave Observatory (aLIGO) de-
tectors will come online in the fall of 2015 with the goal of providing the first direct
detection of gravitational waves. Detector characterization techniques, focused on the
reduction of noise, are imperative to analyze and suppress noise to provide sufficient
sensitivity for the detection of gravitational waves. Caltech houses the LIGO 40 meter
prototype interferometer, a copy of the LIGO interferometers, providing the perfect
playground to test and design novel detector characterization techniques for later im-
plementation at the main sites. While summary pages, websites showing the state of
the detector in real-time, are used to monitor the main detectors, the 40 meter proto-
type lacks many of these low-latency monitoring features. We incorporate new features
into the 40 meter prototype summary pages in the hope of benefiting the entire LIGO
community by providing real-time access to detector monitoring tools. Additionally,
we develop basic tools to model Gaussianity of noise sources in a clear and visually
meaningful display, open for addition to the summary pages.
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1 Introduction

Einstein’s General Theory of Relativity, a four-dimensional mathematical model of the dy-
namics of space-time, propelled a scientific hunt for the detection of gravitational waves
with the formation of the dynamics of space-time. Einstein’s theory predicts the existence
of gravitational waves, ripples in space-time propagating at the speed of light, produced by
the quadrupole moment of mass distribution [1]. Yet, nearly a century after their inception,
gravitational waves have not been directly detected.

A worldwide network of ground-based interferometers has been constructed to provide the
first direct detection of gravitational waves. The Laser Interferometer Gravitational-Wave
Observatory (LIGO), consisting of detectors in Livingston, Louisiana and Hanford, Wash-
ington, recently underwent years of upgrades to provide greater sensitivity and increase the
likelihood of detecting gravitational waves. To first order, these gravitational wave detectors
are massive Michelson interferometers, with arm lengths of up to 4km (Figure 1) [3]. Laser
light is split and sent down two orthogonal arms of equal length; the light is reflected at
the end of the arms and then recombined. When a gravitational wave passes through an
interferometer, a slight change in arm length will occur, resulting in a phase difference in
laser light split down each arm. Gravitational wave signals are extracted from this resultant
phase difference.

Figure 1: Basic interferometer design [2]

Detecting a gravitational wave is difficult and requires impeccably sensitive instrumentation
and detection abilities, in an attempt to detect length variations of only 10−18 m, smaller
than the diameter of a proton [3]. Noise makes detection even more difficult; everything
in the interferometer system is moving or fluctuating, such as the mirror position, laser
frequency, laser intensity, arm resonant condition, and many more factors resulting in a
substantial number of noise sources. Gravitational wave detection is a battle against noise,
and detector characterization spearheads this battle. Through detector characterization, we
analyze interferometer output and noise sources for certain periods of time to characterize
the nature of noise, in hopes of eliminating it from the data supply. Gravitational waves
cannot be detected with LIGO without strong detector characterization techniques.

As Advanced LIGO becomes operational in late 2015 [4], the implementation of advanced
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detector characterization techniques is imperative to utilize the increased sensitivity for direct
detection of gravitational waves. I am pleased to have devoted my summer to LIGO detector
characterization while it serves a vital role in the effort to detect gravitational waves.

My summer project consists of two main parts, outlined in this paper. As described in
Section 2, I updated the LIGO summary pages which facilitate detector monitoring tasks.
Subsequently, I characterized non-Gaussian noise through various statistical methods as de-
scribed in Section 3. Relevant statistical concepts are listed in Appendix A, and instructions
for accessing and editing the summary pages are found in Appendix B.

2 Summary Pages

In addition to the two large LIGO detectors in Washington and Louisiana, Caltech houses
a prototype detector [5]. The prototype detector, with 40m long interferometer arms, has
a similar configuration to the larger detectors but is more open to modification and test-
ing of new design implementations (Figure 2). The 40m prototype detector is the perfect
playground for detector characterization experimentation. By implementing new designs
at the 40m detector instead of the LIGO sites, we are able to provide novel improvements
to all LIGO detectors without interfering with data collection at the sites. The prototype
consists of several subsystems which monitor the functionality of the detector, enumerated
in Table 1 [6, 7, 8]. By frequently collecting data from the subsystems, we provide a means
of monitoring the detector.

Figure 2: Schematic representation of the 40m prototype detector. A length of 40m separates
the input mirror (ITM) and end mirror (ETM) [5, 6].

LIGO summary pages provide an accessible method to monitor the detectors in real time
online [9]. Summary pages include dozens of plots monitoring detector status from seismic
activity, to suspension systems, and to lock status. Summary pages include ASD spectra
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Table 1: 40m Detector Subsystems

Name Subsystem Details
Length Sensing and Control (LSC) Mirror position control and

gravitational wave signal channel.

Angular Sensing and Control (ASC) Mirror angular control.

Arm Length Stabilization (ALS) Monitor x and y arm length.

Pre-Stabilized Laser (PSL) Optical cavities for laser stabilization in
frequency and spacial distribution.

Input and Output Optics (IOO) Similar to PSL.

Suspensions (SUS) Sensors for mirror positions and
angles. Optical lever system which

provides additional angular
sensing signals.

Physical Environmental Sensors (PEM) Seismic and acoustic noise.

Vacuum System (VAC) Vacuum status monitoring.

displaying gravitational wave amplitude spectral density over frequency [10]. Summary pages
also provide time-frequency event plots representing signal-to-noise ratio (SNR) for several
event triggers [10]. A screenshot of summary pages is shown in Figure 3. While the Hanford
and Livingston detectors have highly informative summary pages, the 40m summary pages
are far behind the quality of the Livingston and Hanford summary pages and lack much of
the information represented in the latter two [9, 11, 12]. This summer, we have implemented
several new features and plots into the 40m summary pages, to enhance the readability and
usability of the summary pages for all members of the LIGO community.

Production of summary pages for the 40m prototype requires careful configuration of many
channels from many subsystems of the prototype. We analyze each channel for a set period of
time to determine the nature of each signal. While checking the behavior of signals, we may
reveal problems with the functionality of specific subsystems of the detector, contributing to
detector improvement.

Summary pages are produced using the GWsumm [13] toolbox, which is based on the GWpy [14]
Python package, providing tools to load, assess, and plot LIGO data. GWsumm [13] scripts
can provide plots for data channels and associated HTML to post the plots on the summary
page website. Instructions for editing and producing the 40m summary pages can be found
in Appendix B.

We sought to provide useful and informative additions to the summary pages to help all
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Figure 3: Screenshot of a summary page monitoring the Hanford detector [12].

users of the 40m detector. After speaking with commissioners of the 40m detector, we im-
plemented improvements to the summary pages that they viewed as necessary. We enumerate
improvements and additions to the summary pages in the following sections.

2.1 Improvements to Existing Plots

Several plots were already available on the summary pages, before the start of this summer
project, including those for IOO, PEM, PSL, SUS, and VAC subsystems, but many of these
plots required improvements. We first provided improved titles and axis labels, as many
plots lacked appropriate labeling.

In addition to providing cosmetic adjustments to either the dearth or flaws in labels, we
altered the range of axes in many cases. Occasionally, axis ranges that failed to appropri-
ately display the necessary data were selected. We determined appropriate axis ranges by
observing past data from several months at a time on the DataViewer [15] program present
at the 40m detector, and we implemented appropriate axis ranges into the summary pages.

There are several periods of time during which no data is displayed on the summary pages,
causing confusion as to what is causing the break in data and uncertainty if data is not being
collected or if the data collected is not within the axis ranges of the summary page plots.
By monitoring the channels in question on DataViewer [15], we analyzed the cause of such
breaks in data acquisition and implement changes to the summary pages, appropriately.

The summary pages lacked accurate triggering systems for certain plot rendering processes.
Specifically, we want to only render data when the interferometer is locked. For example,
the channels C1:IOO-MC TRANS P and C1:IOO-MC TRANS Y should only be plotted when the
mode cleaner is locked, namely when C1:IOO-MC TRANS SUM is greater than 104 counts. We
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altered the summary pages configuration files to allow the user to choose between rendering
data for all times or only for times at which the mode cleaner is locked, such as in Figure 4.
The addition of triggered states allows for more practical and legible data visualization.

Figure 4: A “state” function is added to the 40m summary pages to restrict data rendering to
times at which the mode cleaner (MC) is locked. This is implemented into the IOO summary
page tab, at which the user can select either All or Locked (MC) from a drop-down menu
to visualize data accordingly. The top plot represents uncalibrated power over time, and the
plot on the bottom represents uncalibrated difference in position of a sensor.

At the request of a 40m commissioner, weather plots were improved to include more tem-
perature information. While PSL table temperature and outdoor temperature, recorded at
the 40m detector weather station, were already present in the summary pages, we added in-
door temperature, as recorded by the C1:PEM-weather insideTemp channel, to the existing
temperature plot on the Weather tab.

2.2 Additions to the Summary Pages

We added plots to these sections of the summary pages. Six suspension system optical level
(OpLev) plots already exist on the summary pages and represent optical lever fluctuations
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in microradians over time for numerous channels. We produced spectra for each OpLev plot
and displayed the spectra tangentially to the already existing time-series, to provide an easy
means of visually comparing the data. Two such plots are shown in Figure 5.

Figure 5: In the SUS: Oplev tab of the 40m summary pages, a time-series of four optical
lever channels is displayed tangentially to an ASD of the corresponding error channels to
each of these four channels.

The summary pages include many plots representing suspension systems for the 40m inter-
ferometer. The SUSdrift tab previously included information on the position of the input
mode cleaner (IMC) and suspension test masses, through angular measurements. We added
two plots to the SUSdrift tab to record angular position of the dual-recycling Michelson
interferometer (DRMI), for both pitch and yaw.

Three tabs were added to the summary pages to provide monitoring information not pre-
viously displayed on the website. The Arm Length Stabilization (ALS) tab was created,
with two time-series characterizing green laser transmission and beatnote. The new Angular
Sensing and Control (ASC) tab monitors position in the input mode cleaner and both inter-
ferometer arms. Lastly, the Length Sensing and Control (LSC) tab was created to display a
cavity power time-series for multiple channels.
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2.3 System Improvements to the Summary Pages

The summary pages online interface includes a code status page, which records the time at
which the summary pages were last updated and various error messages associated with the
different tabs of the summary pages. Previously, the code status page would record each
tab as either OK or ERROR. The code status page failed to recognize instances in which tab
rendering resulted in a warning message and, instead, categorized this as an error. The
code status page was improved to list WARNING as a third tab status, thus providing a more
obvious interface.

3 Non-Gaussianity Tests of Noise Sources

While not working on implementation of summary pages, we focused on noise characteri-
zation. We explored the appearance of various noise sources in the interferometer channels
and provide additional methods to characterize noise with the predefined goal of eliminating
as many noise sources as possible from the detector.

Gravitational wave detectors are constantly inundated with noise. Noise comes in numer-
ous forms, such as white noise, sinusoidal, stochastic, Gaussian, and more. Noise can be
classified as deterministic, such as sinusoidal or periodic noise, or indeterministic noise, such
as stochastic noise (random and continuous) or random bursts. We can assign a color to
noise, which is associated with the slope of the noise’s power spectrum. White noise is flat
while pink noise is enhanced at lower frequencies. We categorize noise as Gaussian or non-
Gaussian, dependent on the statistical nature of the noise. Typically, thermal and quantum
noise exhibit Gaussian behavior. It is difficult to distinguish between transient gravitational
wave events and non-Gaussian noise, specifically in gravitational wave searches without pre-
defined waveforms (i.e. burst searches), thus requiring the characterization of non-Gaussian
noise to reveal true event signals [16]. By characterizing noise Gaussianity, we can better rec-
ognize noise patterns and understand the nature of noise, leading to the further elimination
of many noise sources.

Power spectral density (PSD) provides one means to characterize noise distributions. A PSD
is a measure of power in several frequency bands, averaged over time. The Fourier transform
of x̃(f) of a time-series x(t) is, by definition:

x̃(f) =

∫ ∞
−∞

x(t)e−i2πftdt, (1)

where |x̃(f)|2 provides the energy spectral density. Energy spectral density abides by Par-
seval’s theorem, which ensures that signal power computed in both the frequency and time
domains are the same, described in Appendix A.9. When noise or signal extends infinitely
in the time-domain, we can define the PSD [17, 18, 19]:

lim
T→∞

1

T
|x̃(f)|2 . (2)

PSDs also follow Parseval’s theorem and correct calculation of a PSD can be confirmed using
this theorem. A PSD has units equivalent to the units of |x(t)|2 divided by Hz. Typically,
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in gravitational wave data analysis, we represent our PSDs in strain /
√
Hz. This requires

us to take the square root of our PSD, which forms an amplitude spectral density (ASD).
Colloquially, ASDs are often still called PSDs, despite this change in calculation.

We calculate PSDs of interferometer signals for a given short period of time, providing many
useful applications in detector characterization. For example, PSD calculation allows us to
monitor the violin, roll, and bounce modes of the steel wires used to suspend the interferom-
eter’s mirrors [20, 21]. Each mirror has six rigid body degrees of freedom: longitudinal, side,
vertical, pitch, yaw, and roll. The resonances of each of these six modes has low dissipation,
corresponding to a long ringdown mode, or high quality factor (Q) for the modes. Feed-
back damping is used to lower the Q’s for some modes, but the violin, roll, and vertical (or
bounce) modes have no such damping control and occasionally become excited by seismic
motion or cross-coupling between modes. Characterization of noise from these three modes
can be achieved through the calculation of a PSD.

By following the statistical method, enumerated in [16], we statistically characterize Gaus-
sianity of PSDs. Assuming we sample the detector output, v(t), in time intervals of ∆t, the
raw output data is recorded as vj = v(j∆t). From the output data, we calculate the output
power:

Pj = |vj|2 . (3)

By dividing the output data into n segments, with k data points in each segment, we define
the following quantities derived from power:

P0
∼= Pj (4)

P1 =
1

k

k∑
j=1

Pj (5)

P2 =
1

k

k∑
j=1

(Pj)
2, (6)

where P0 is the long-term average of Pj, using all data points. P1 is the instantaneous mean
of signal power, Pj, given for only a single data segment. Similarly, P2 is the instantaneous
mean of the squared signal power, also for only a specific segment. The parameter Pj, is
the average of Pj. If data are completely stationary, Pj is constant, resulting in a P1 equal
to P0, and P2 equal to P 2

0 for all n data segments. From these parameters, we define two
Gaussianity evaluations coefficients:

c1 =
P1

P0

− 1 (7)

and

c2 =
1

2

(P2

P 2
1

− 2
)
, (8)

which are also the first two coefficients in the Laguerre expansion of the noise power distri-
bution, found by equating P (ζ) in Appendix C and P (j). It is assumed that c2 becomes
constant if the signal power is much larger than the background noise level [16]. The coeffi-
cient c1 provides a metric for the stability of a signal, while c2 indicates non-Gaussianity, as
P2/P

2
1 is related to glitchiness of power.
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Using the coefficients c1 and c2, we can evaluate the Gaussianity of a PSD. If P (j) obeys a
normal Gaussian distribution, c1 = c2 = 0. Fluctuations in the average power, P1, result in
a non-zero c1. If Pj follows a Gaussian distribution with a non-unity standard deviation, c1
becomes non-zero, but c2 remains zero, as an indication of the signal’s Gaussian nature.

Rayleigh statistics provide another means to determine the Gaussianity of a noise distribution
[7, 22], historically more common in the LIGO community. The Rayleigh statistic (R)
provides a metric for the Gaussianity of noise through a calculation of the ratio of standard
deviation to mean of a power spectrum in a set frequency bin:

R(f) =
σ[|x̃T (f)|2]
µ[|x̃T (f)|2]

, (9)

where σ and µ are defined in Appendix A and x̃T (f) is defined in Equation 1. The value
of R provides a numerical measure of the Gaussianity of a signal, with R = 1 representing
Gaussian noise, R < 1 representing coherent variation in the data, and R > 1 indicating that
glitchy data is present [7, 22, 23]. Rayleigh statistics are based on the assumption that an
exponential distribution, with an equal mean and standard deviation, suggests a Gaussian
noise signal.

We can equate the statistical applications of Rayleigh statistics with the coefficient analysis
of PSDs in [16]. For a given PSD, we expect P1 to be the mean:

P1 = µ

[
1

T
|x̃T (f)|2

]
, (10)

and P2 to follow the distribution,

P2 =

(
σ

[
1

T
|x̃T (f)|2

])2

+ P 2
1 . (11)

From this, we derive the equation for R in terms of P1 and P2:

R2 =
P2 − P 2

1

P 2
1

=
P2

P 2
1

− 1. (12)

It is then evident that

c2 =
1

2
(R2 − 1), (13)

to match Equation 8. For a Gaussian distribution, R is one and c2 is zero.

We implemented our statistical metrics for Gaussianity of PSDs to a sample set of data
from LIGO’s Science Run 5 (S5). We provide a visually explicit model for characterizing
the Gaussianity of noise, through the c2 coefficient, for the complete frequency range of the
corresponding PSD, as described in the following section.

3.1 Gaussianity Tests with Livingston Science Run 5 Data

We downloaded an hour of Livingston S5 data from the LIGO Open Science Center (LOSC)
[24] as an hdf5 file. Using the readligo module, also available at LOSC, the data are
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stored into a series of Python data structures, which include information on strain, time,
and channel information.

By plotting strain versus time, we produced a time-series for 16 seconds of data from the
hour of downloaded data (Figure 6). The data are chaotic and conveys little information in
the time-domain. Some oscillatory periods can be determined from these plots, but much
more information is available if we observe the same dataset in the frequency-domain.

Figure 6: Strain versus time for 16 seconds of L1 data from S5.

We create a PSD of the dataset to provide more information about the frequency content
of the time-series. We use the Python function, matplotlib.mlab.psd() to compute the PSD.
This function uses Welch’s average periodogram method to approximate a PSD. The time-
series is divided into several segments of length NFFT, and the fast Fourier transform (see
Appendix A) is calculated for each segment, then squared, and then averaged for all segments
to produce the PSD. We define the sampling frequency to be the inverse of the time between
consecutive data sampling. The NFFT segment length is also set to this sampling frequency
value. We select a Hanning window function, which maps each segment’s values onto the
Hanning function of length NFFT. As the Hanning function eliminates datapoints at the
endpoints of segments, we define an overlap of half of NFFT which recalculates the PSD using
the same segments shifted over by half their lengths. Using this method, we produce the
PSD seen in Figure 7. This PSD looks very similar to that of the Livingston detector during
the S5 run, with several frequency peaks appearing in the expected locations (Figure 8). To
directly compare Figure 7 and Figure 8, the y-axis of Figure 8 must be divided by the length
of the interferometer arms, 4km. We confirm the calculation of our PSD by ensuring that
Parseval’s theorem holds, by following Equation 27 in Appendix A.
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Figure 7: PSD calculated over entire time-series dataset for a set of Livingston S5 data.

We begin to explore the Gaussianity of LIGO data at individual frequency values by com-
piling distribution statistics for a series of PSDs. We split the time-series of Figure 6 into
several equally spaced frequency chunks of 1 second length, overlapped with half of the chunk
length, and calculate the individual PSD of each chunk. We plot the PSD produced for each
segment on the same plot and compare them (Figure 9). At a specific frequency, we view
the spread in PSD value through the production of a histogram. A histogram for the spread
in PSDs at 1000Hz is shown in Figure 10. We display the distribution in the pure PSD, with
units of 1/

√
Hz, to clearly show that an exponential distribution represents Gaussian noise.

We then follow the mathematical metric of [16] to calculate the c2 coefficient for Gaussianity
at each frequency. The long-term average, P0 (Equation 4), is calculated by taking the
maximum number of time chunks that the time-series can be divided into and averaging all
PSD values at a given frequency. The instantaneous average, P1 (Equation 5), is calculated
with the same method for a smaller number of time chunks. Using these coefficients, in
addition to P2 (Equation 6), we follow Equation 8 to calculate the c2 coefficient. Figure 11
shows the c1 and c2 coefficients at each frequency for a given PSD.

From this mathematical metric, we can highlight particularly illuminating frequencies, with
highly non-Gaussian behavior. For example, peaks at 23Hz and 33Hz appear to have no ma-
jor difference in statistical characteristics in Figure 9, but differ greatly when c2 is calculated.
The 23Hz band (Figure 12) has a c2 of -0.474, suggesting a stationary noise distribution,
while the 33Hz band (Figure 13) exhibits a highly glitchy distribution with a c2 of 0.888.

By directly calculating c2 for a set of PSDs at a given frequency, we are able to characterize
the Gaussianity of noise far beyond the level that is available by visually observing the PSD.
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Figure 8: Published sensitivity for the LIGO detectors during the S5 run [25].

Figure 9: Several PSDs calculated for equally spaced frequency segments and compiled into
one graph.
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Figure 10: A clear exponential distribution is present in the PSD spread at 1kHz, suggesting
Gaussian noise. The red line displays an exponential distribution, which appears linear in a
log-lin plot.

Figure 11: Average of the many PSDs, displayed in Figure 9, with corresponding c1 and c2
coefficients. A c2 of zero indicated Gaussian noise at a particular frequency.
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Figure 12: A stationary noise distribution is present at 23Hz.

Gaussianity plots, such as Figure 11, provide a clear method of visualizing noise distributions
at a wide range of frequencies. This method can be expanded upon by providing plots to
observe the change in Gaussianity for a signal at a particular frequency over time.

4 Conclusion

As Advanced LIGO begins to collect data, detector characterization takes a vital role in the
effort to locate gravitational wave signals in these data. The implementation of summary
pages for the 40m prototype detector benefits the entire LIGO community by providing
real-time access to detector monitoring tools. Characterization of noise Gaussianity through
a mathematically rigorous model leads to a clear method of understanding and observing
noise in many channels of the interferometer, enhancing later data collection and eventual
astrophysical data analysis of the interferometer output. In the future, Gaussianity plots,
such as Figure 11 can be added to the 40m summary pages, in addition to the main detector
summary pages, to provide further information on the detector channels.
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Figure 13: A glitchy noise distribution is present at 33Hz. Instead of having a distinct
exponential decay, some excess PSD signal is present at higher PSD values, indicating non-
Gaussian noise.
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Appendix A Relevant Statistical Concepts

A.1 Arithmetic Mean

The arithmetic mean represents an unweighted average of a set of n values.

µ = x =
1

n

n∑
i=1

xi (14)

A.2 Variance

Variance, σ2, measures the spread of a set of numbers.

σ2 =
1

n

n∑
i=1

(xi − µ)2 (15)

A.3 Standard Deviation

Standard deviation is the square root of variance. It represents the amount of variation in a
set of n values.

σ =

√√√√ 1

n

n∑
i=1

(xi − µ)2 (16)

A.4 Skewness

Skewness quantifies the asymmetry of a distribution. If the left side is more pronounced
than the right side, then the data set is said to have negative skewness. If the distribution is
symmetric, skewness is zero. Equations for skewness vary, and one such equation is provided
below.

Skewness =

1
n

n∑
i=1

(xi − µ)3

σ3
(17)

A.5 Kurtosis

In addition to skewness, kurtosis provides another descriptor for the shape of a distribution.
Kurtosis is represented in many ways, of which one such equation is provided, and can be
thought of as “peakedness” of a distribution.
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Kurtosis =

1
n

n∑
i=1

(xi − µ)4

σ4
(18)

A.6 RMS

The root mean square (RMS) can be calculated to represent a series of data points varying
with time. The RMS for a set of n discrete values is:

xrms =

√
1

n
(x21 + x22 + · · ·+ x2n), (19)

while the RMS for a continuous time-dependent function from the time interval T1 to T2 is

frms =

√
1

T2 − T1

∫ T2

T1

[f(t)]2dt. (20)

A.7 Fourier Transform

The Fourier transform provides a continuous Fourier series from −∞ to ∞ for a given
function. The Fourier transform of f(t) is,

g(ω) =
1

2π

∫ ∞
−∞

f(t)e−iωtdt, (21)

and the inverse Fourier transform is,

f(t) =

∫ ∞
−∞

g(ω)eiωtdω. (22)

A.8 Fast Fourier Transform

The fast Fourier transform (FFT) provides a computer algorithm for calculating a Fourier
transform. Rather than describing the mathematical formalism of a FFT, I will express its
overall function pictorially in Figure 14.

A.9 Parseval’s Theorem

Parseval’s theorem illuminates the relationship between the average of the square of a func-
tion f(t) and the Fourier coefficients. Assume a function f(t) is represented by the following
Fourier series which is periodic over the interval [−l, l]:

f(t) =
∞∑
−∞

cne
inπt/l, (23)
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Figure 14: The bottom plot displays the FFT of the above plot. The FFT shows that
most of the power is at frequency 4, reflecting the fact that four periods were chosen for the
calculation of the FFT [26].

where cn is

cn =
1

2l

∫ l

−l
f(t)e−inπt/ldt. (24)

Parseval’s theorem then claims the following:

The average of |f(t)|2 over a period =
∞∑
−∞

|cn|2 . (25)

Parseval’s theorem can be written in several different ways including the following:∫ ∞
−∞
|x(t)|2 dt =

∫ ∞
−∞
|x̃(f)|2 df, (26)

∫ ∞
0

S(f)df = σ2 (27)

where |x̃(f)|2 is the energy spectral density and Sy(f) is the power spectral density. Parseval’s
theorem can easily be related to the RMS by the inclusion of a square root.
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Appendix B How to Access the Summary Pages

The 40m detector summary pages can be viewed on https://nodus.ligo.caltech.edu:

30889/detcharsummary/, which updates every 30 minutes to represent the most recent
channel outputs for the detector.

After receiving appropriate credentials, files to edit the summary pages can be found on
the nodus 40m server (nodus.ligo.caltech.edu) at /users/public html/gwsumm-config.
All files following the pattern c1*.ini, in addition to defaults.ini, are read by a Cron
job which then applies the changes found in these files to the summary page website. These
files contain information on the channels that are represented and the plot format that will
represent the relevant information, such as spectra, time-series, etc. There are many files for
the various subsystems, such as c1sus.ini, c1weather.ini, and c1psl.ini.

The processes responsible for generating the summary pages are executed from the ldas-pcdev1
headnode at the CIT cluster using the 40m shared account. A summary page tab can be
rendered manually for a specific day (YYYMMDD) by running the command:

gw summary day YYYYMMDD −− i f o c1 −−con f i g− f i l e DIRECTORY/ d e f a u l t s
↪→ . i n i −−con f i g− f i l e DIRECTORY/ c1sus . i n i

from the public html/summary/ directory,, while linking to the DIRECTORY that contains all
relevant *.ini files. This directory also contains relevant logs and error messages for recent
summary pages runs.
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Appendix C Laguerre Expansion

I provide a statistical background for Laguerre exponential expansions, following the method
defined in [16]. We define a probability density function, P (ζ), given the following Rayleigh
distribution:

Φ(ζ) = e−ζ , (28)

where ζ is a function of Gaussian variables x and y,

ζ =
1

2
(x2 + y2). (29)

We derive ζ by first defining a heterodyne signal. We focus on the signal component at f0
= ω0/2π with frequency resolution df = 1/T. We define this signal component as

v(t) = Ax cosω0t+ Ay sinω0t, (30)

for f0 � df. The variables, Ax and Ay, change at a much slower rate than the frequency of
oscillation, ω0. We can then calculate the instantaneous power of the signal to be

P (t) =
1

T

∫ t+T

t

v(t′)2dt′, (31)

which is equivalent to

P (t) =
1

2

(
Ax(t)

2 + Ay(t)
2
)
. (32)

We hope to test the Gaussianity of the independent variables, Ax and Ay, with an instan-
taneous power of P(t). If we replace Ax with x, Ay with y, and P (t) with ζ, we reproduce
Equation 28. Given that P (ζ) is perturbed from an exponential distribution, we represent
the probability density function as a series expansion:

P (ζ) = c̄0Φ(ζ) + c̄1L1(ζ)Φ(ζ) + c̄2L2(ζ)Φ(ζ) + · · · . (33)

Ln(ζ) describes the Laguerre polynomials for ζ, following the pattern

Ln(ζ) = eζ
dn

dζn
(ζneζ). (34)

The first few Laguerre polynomials are explicitly described as L0 = 1, L1 = 1− x, and L2 =
1
2
(x2 − 4x+ 2). Laguerre polynomials satisfy a condition for orthogonality:∫ ∞

0

Lm(ζ)Ln(ζ)Φ(ζ)dζ = δmn. (35)

The coefficients c̄n can be calculated with

c̄n =

∫ ∞
0

Ln(ζ)P (ζ)dζ, (36)

resulting in coefficients such as c̄0 = 1, c̄1 = 1− ζ̄, and c̄2 = 1
2
(ζ̄2 − 2) .
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