Advanced LIGO : Aiming for the detection of the gravitational wave signal, and beyond

Hiro Yamamoto LIGO lab/Caltech

- New Astronomy by gravitational wave signal at the 100th memorial year of general relativity
 - » In the beginning...

LIGO

- 2nd generation detector advanced LIGO
- Targeting the first observation
- Aiming for the future

Some slides are copied from talks in 2015 March LVC meeting and from the talk by D. Reitze G1500139LIGO-G1500419Hiro YamamotoPATF15 at Vietri sul Mare on March 28, 2015

Gravitational waves

- Gravitational waves are propagating dynamic fluctuations in the curvature of space-time ('ripples' in space-time)
- Emissions from rapidly accelerating non-spherical mass distributions
 - » Quadrupolar radiation

Hiro Yamamoto PATF15 at Vietri sul Mare on March 28, 2015

Interferometer for Gravitational Wave detection

LIGO-G1500419

Hiro Yamamoto PATF15 at Vietri sul Mare on March 28, 2015

From G1101133 by D.H.Shoemaker

In the beginning

- Rai Weiss of MIT was teaching a course on GR in the late '60s
- Wanted a good homework problem for the students
- Why not ask them to work out how to use laser interferometry to detect gravitational waves?
- ...led to the instruction book we have been following ever since

QUARTERLY PROGRESS REPORT

APRIL 15, 1972 MASSACHUSETTS INSTITUTE OF TECHNOLOGY RESEARCH LABORATORY OF ELECTRONICS CAMBRIDGE, MASSACHUSETTS 02139

- (V. GRAVITATION RESEARCH)
- B. ELECTROMAGNETICALLY COUPLED BROADBAND GRAVITATIONAL ANTENNA
- 1. Introduction

The prediction of gravitational radiation that travels at the speed of light has bee

Real size R&D for the real detection

Drever

LIGO Chronology idea to realization ~ 15 years

Weiss

	1970s 1979 1984		Feasibility studies and early work on laser interferometer gravitational-wave detectors National Science Foundation (NSF) funds Caltech and MIT for laser interferometer R Development of multiple pendulum Advanced LIGO Concept	s &D			
rney for the new astronomy	1989	December	Construction proposal for LIGO submitted to the NSF (\$365M as of 2002)				
	1990	May	National Science Board approves LIGO construction proposal Groundbreaking at Hanford site				
	1994	July					
	1999	-	LIGO Scientific Collaboration White Paper on a Advanced LIGO interferometer conc	cept			
	2000	October	Achieved "first lock" on Hanford 2-km interferometer in power-recycled configuration				
	2002	August	First scientific operation of all three interferometers in S1 run				
	2003		Proposal for Advanced LIGO to the NSF (\$205 NSF + \$30 UK+German				
	2004	October	Approval by NSB of Advanced LIGO	ON			
	2005	November	Start of initial LIGO Science run, S5, with design sensitivity	21			
	2008	April	Advanced LIGO Project start				
	2009	July	Science run ("S6") starts with enhanced initial detectors	M			
	2014	May	Advanced LIGO Livingston first two-hour lock	ogt			
	2015	March	Advanced LIGO all interferometers accepted	-			
Jo I	2015	September	Advanced LIGO observation run 1 scheduled	cutive			

Initial LIGO events Advanced LIGO events R&D of aLIGO using iLIGO facility

5

LIGO-G1500419

Hiro Yamamoto PATF15 at Vietri sul Mare on March 28, 2015

Slide Credit: Matt Evans (MIT)

#events by advanced LIGO ~
1000 x #events by initial LIGO

Assumes NS-NS rate between 10^{-8} Mpc⁻³yr⁻¹ and 10^{-5} Mpc⁻³yr⁻¹

8

		Estimated			Number
		Run	BNS Range (Mpc)		of BNS
Observation run	Epoch	Duration	LIGO	Virgo	Detections
1	2015	3 months	40 - 80	_	0.0004 - 3
2	2016 - 17	6 months	80 - 120	20-60	0.006-20
3	2017 - 18	9 months	120-170	60-85	0.04 - 100
	2019 +	(per year)	200	65 - 130	0.2 - 200
	2022+ (India)	(per year)	200	130	0.4 - 400

LIGO-G1500419

Hiro Yamamoto PATF15 at Vietri sul Mare on March 28, 2015

Event GW100916: blind injection http://www.ligo.org/science/GW100916/

Fundamental Sensitivity Limits in Advanced LIGO

LIGO Livingston Sensitivity Progression

Planning for Advanced LIGO Science

Squeezed Light in LIGO

suppressing quantum noise without increasing power

- Heisenberg Uncertainty Principle $\langle (\Delta \hat{X}_1)^2 \rangle \langle (\Delta \hat{X}_2)^2 \rangle > 1$
- Squeezed state
 - Reduce noise in one quadrature at the expense of the other
 - Shot noise phase, radiation pressure - amplitude

X₁ and X₂ associated with amplitude and phase

LIGO-G1500419

Aasi, et al., (LIGO Scientific Collaboration), Nature Physics, **7**, **962** (**2011**); Nature Photonics 7 613 (2013).

Test Masses with thermal compensation system

- Requires the state of the art in substrates, polishing and coating
 - » Fabri-Perot cavity is used to measure arm length or space distortion

- Half-nm flatness over 300mm diameter
- 0.2 ppm absorption at 1064nm
- Coating specs for 1064 and 532 nm
- Mechanical requirements: bulk and coating thermal noise, high resonant frequency

LIGO vacuums

Beam light path must be high vacuum to minimize "phase noise". The 4km arm is the world's biggest UHV vacuum system, and is straighter than earth's curvature

All optical components must be in high vacuum, so mirrors are not "knocked around" by gas pressure

t Vietri sul Mare on March 28, 2015

LIGO Some Questions Gravitational Waves May Be Able to Answer

Fundamental Physics

- » Is General Relativity the correct theory of gravity?
- » How does matter behave under extreme conditions?
- » What equation of state describes a neutron star?

Astrophysics, Astronomy, Cosmology

- » Do compact binary mergers cause GRBs?
- » What is the supernova mechanism in core-collapse of massive stars?
- » How many low mass black holes are there in the universe?
- » Do intermediate mass black holes exist?
- » How bumpy are neutron stars?
- » Is there a primordial gravitational-wave residue?

LIGO-G1500419

Hiro Yamamoto PATF15 at Vietri sul Mare

Right ascension [hours]

Advanced LIGO Data analysis

Burst

 » All-sky search for generic GW transients, in low latency for EM follow up and deep, offline for 4σ detection confidence

• Compact Binary Coalescence

- » Low latency, all-sky search for BNS and NS-BH systems
- » Search for binary neutron-star and black-hole systems (BNS, BHNS, BBH)

Continuous Wave

- » All-sky deep/broad search for isolated starts
- » Targeted search for high value, known pulsars
- Stochastic Gravitational Wave background
 - » Directional and isotropic search for stochastic gravitational wave background
 - » Constraints of a detected background of astrophysical origin with long transients

- Search for GW signals using alerts by other signals
- Parameter estimation for the astrophysical interpretation of detected events

- 900+ members, 82 institutions, 16 countries, 52 MOUs.
- https://my.ligo.org/census.php
- https://roster.ligo.org/roster.php

LIGO

LIGO Open Science Center

LIGO is operated by California Institute of Technology and Massachusetts Institute of Technology and supported by the National Science Foundation of the United States.

Welcome! The LIGO Open Science Center (LOSC, https:// losc.ligo.org) provides access to a variety of LIGO data products, as well as documentation, tutorials, and online tools for finding and viewing data.

The S5 Data Release S5 Time Range: Nov. 4, 2005 ~ Oct. 1, 2007 Detectors: H1, H2, and L1

The S6 Data Release S6 Time Range: Jul.7, 2009 ~ Oct 20, 2010 Detectors: H1 and L1

<u>All Science Mode Times for LIGO/Virgo/GEO</u> <u>Network</u> Time Range: 2004 ~2014 Detectors: H1, H2, L1, G1, V1

IP addresses who downloaded data

LIGO-G1500419

Hiro Yamamoto PATF15 at Vietri sul Mare on March 28, 2015

International network

LIGO-G1500419

Improvement of Binary Neutron Star Merger Localization by Adding LIGO-India

Multi-messenger astronomy collaborations with Groups Detecting other signals

- Discussions going toward the new astrophysical era
- Complementary alert system
- Complementary and supplemental information about the source
- Many MOUs exchanged with EM partners, covering the whole EM spectrum.

LIGO-G1500419 Hiro Yamamoto PATF15 at Vietri sul Mare on March 28, 2015

Aiming for the future beyond advanced LIGO

	Ultimate R&D + Design		Cosmic Explorer – New Facility			
Si, Cryo	o, 1550nm R&D	Voyager – Current Facility				
Coating, Susper	nsion R&D A+		Range $z > 1$ (10 x aLIGO) New facility \Rightarrow Major cost 40km arm, bigger mass, better coating, reduction of losses or Cocce:			
Sqz R&D	A+	Golo				
Advanced	Range ~ 2x aLIGO (340Mpc) Cost O(\$10M)	Cost O(Mul Kange ~ $2X A+ (700 MPC)$ Cost O(\$50M~\$100M) Cryogenic (120K), 1550nm			
NON	Squeezing, bigger mass, better coating, reduced thermal noise	laser, Si	llicon, better coating			
2015	2020	2025	2030			

Slide prepared for 2016 announcement

