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Evolution in 40 yrs

Almost 9 orders of magnitude improvement
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LIGO

@ LIGO = Laser Interferometer
Gravitational wave Observatory
® Joint project between Caltech
and MIT funded by NSF
@ Collaboration with ~ 90 institutes
all over the world

® The detectors have been upgraded to

Advanced LIGO (aLIGO) ‘



Working principle

Sensitive in 10 to several kHz band
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Two LIGO observatories
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Wold Wide Network

Allows for sky localization
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Advanced LIGO

# Aims to increase the sensitivity by a factor of ~10
i NS-NS blnary range of 200 Mpc
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Advanced LIGO

High power laser

120 W (1064nm) Michelson interferometer with
Fabry-Perot cavities enhanced by
power- and signal- recycling cavities

Power-recycling

mirror
4 km Fabry-Perot cavity
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Vibration Isolation

# Multiple isolation stages to provide seismic level of
10e-19 m/sqgrtHz at 10 Hz.
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Installation and integration tests

We performed several integration tests
as the hardware was installed and became ready for testing

2011 . 2012 . 2013 . 2014 ., 2015

! PR
|
Mode | M

X arm
Y arm

Cleaner

Livingston

Installation

X arm

Installation

Hanford




Current Status

Goals for the installation are acheived
Goals: we provide

# Fully locked interferometer.

@ Stable operation for 2 hours.

We are preparing for observation runs
# Noise hunting
# Duty-Cycle improvement

with a low laser power (10-25 W)

Livingston achieved 60 Mpc binary ranﬁ
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What are difficulties ?

# More complicated interferometer control
® Large number of active control loops to handle
@ Signal-recycling optical cavity is newly implemented
® Weaker test mass position actuators

# Use of high power laser
® Opto-mechanical couplings

® Thermal deformations of mirror substrates

# Noise Hunting
@ Source identification

i And more




Interferometer Control

Signal can be obtained
only when the cavity is in the vicinity of operating point

simplified model
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Arm Length Stabilisation (ALS)

# Uses auxiliary lasers (532 nm, visible)
# Senses the arm lengths independently
# Reduces complexity
of interferometer control
# Effectively expands linear range
but noisier
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[2] Kl et al., J.Opt.Soc.Am.A, 29,10,2092 (2012)



Full lock achieved

# Achieved at Livingston in May 2014
# Achieved at Hanford in Feb. 2015

Fully locked !
Adjusting
operatlng point
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A.Staley et al., Class. Quantum Grav. 31,24 (2014)




Challenges with high power

# To achieve better quantum noise,
laser power will be increased

# However high power laser is known to
cause a humber of issues

# Thermal deformation of the mirror substrates

# Radiation pressure will be large enough to cause
opto-mechanical couplings

=> Parametric instabilities

=> Radiation pressure angular instability

=> we started experiencing these issues




Parametric Instabilities

# Mechanical modes of the test masses couple
to particular spatial mode of the laser field [1]
# Some modes can be unstable (it grows forever)
# Livingston started seeing an unstable mode at 25 W [2]

Nascent Mechanical

# An active damping  Excittion Mode

technique will be E}_{} G2 3

applied [3].
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Radiation Pressure Torque

(a) symmetric yaw

# Radiation pressure links
two test masses [1]

# This leads to a unstable
mechanical mode

# Experienced in initial LIGO
and mitigated by active
alignment control [2][3]

# We will enter the unstable
regime

[1] J.A.Sidles and D.Sigg, Phys. Letters A, 354,3,167 (2006)
[2] K.Dooley et al., JOSA A, 30 12 2618 (2013)
[3] E.Hirose et al., Applied Optics, 49 18 3474 (2010)




Noise hunting (identification)

107"

# Continuous effort to identify sources and reduce noise
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Observation plans

# Ol (nhominally Sep.- Dec. 2015)
3 months
40 - 80 Mpc range
m 02 (2016 - 2017 ?)
6 months
80 - 120 Mpc range

a 03 (2017 -2018 ?)
9 months
110- 170 Mpc range

* Strongly depend on how the commissioning activities go

y.




Example Noise Progression

Advanced LIGO
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Detection Rate

plot from L.Barsotti and P.Fritschel,
LIGO-T1200307-v4
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Conclusions

# Installation completed at both observatories
# Both observatories achieved full lock
and demonstrated stable operation
# Currently in a low power state to improve
noise and duty-cycle
# The planned 1st observation run starts
Sep. 2015 with 40-80 Mpc sensitivity.
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