Current Status of Advanced LIGO

Kiwamu Izumi for LSC

LIGO-G1500170-v2 31st PCGM University of Oregon (14/Mar/2015)

Introduction

Advanced LIGO

Experimental highlights and challenges

Prospects

Evolution in 40 yrs

and beyond

Almost 9 orders of magnitude improvement

LIGO

 LIGO = Laser Interferometer Gravitational wave Observatory
Joint project between Caltech and MIT funded by NSF
Collaboration with ~ 90 institutes all over the world

The detectors have been upgraded to Advanced LIGO (aLIGO)

Working principle

Sensitive in 10 to several kHz band

Two LIGO observatories

Wold Wide Network

Allows for sky localization

Introduction

Advanced LIGO

Experimental highlights and challenges

Prospects

Advanced LIGO

Aims to increase the sensitivity by a factor of ~10 NS-NS binary range of ~ 200 Mpc

Advanced LIGO

Vibration Isolation

Multiple isolation stages to provide seismic level of 10e-19 m/sqrtHz at 10 Hz.

Installation and integration tests

We performed several integration tests as the hardware was installed and became ready for testing

Current Status

Goals for the installation are acheived Goals: we provide

- Fully locked interferometer.
- Stable operation for 2 hours.

We are preparing for observation runs

- Noise hunting
- Duty-Cycle improvement
- with a low laser power (10-25 W)

Livingston achieved 60 Mpc binary range

Introduction

Advanced LIGO

Experimental highlights and challenges

Prospects

What are difficulties ?

More complicated interferometer control

- Large number of active control loops to handle
- Signal-recycling optical cavity is newly implemented
- Weaker test mass position actuators

Use of high power laser

- Opto-mechanical couplings
- Thermal deformations of mirror substrates

Noise Hunting

Source identification

And more

Interferometer Control

Signal can be obtained

only when the cavity is in the vicinity of operating point

Arm Length Stabilisation (ALS)

- Uses auxiliary lasers (532 nm, visible)
- Senses the arm lengths independently
- Reduces complexity
 - of interferometer control
- Effectively expands linear range but noisier

Full lock achieved

Achieved at Livingston in May 2014
Achieved at Hanford in Feb. 2015

Challenges with high power

- To achieve better quantum noise, laser power will be increased
- However high power laser is known to cause a number of issues
- Thermal deformation of the mirror substrates
- Radiation pressure will be large enough to cause opto-mechanical couplings
- => Parametric instabilities
- => Radiation pressure angular instability
- => we started experiencing these issues

Parametric Instabilities

- Mechanical modes of the test masses couple to particular spatial mode of the laser field [1]
 Some modes can be unstable (it grows forever)
 Livingston started seeing an unstable mode at 25 W [2]
- An active damping technique will be applied [3].

M.Evans et al., Phys.Letters A, 374 665 (2010)
M.Evans et al., arXiv:1502.06058 (2015)
J.Miller et al., Phys.Letters A, 375 3 788 (2010)

Radiation Pressure Torque

J.A.Sidles and D.Sigg, Phys. Letters A, 354,3,167 (2006)
K.Dooley et al., JOSA A, 30 12 2618 (2013)
E.Hirose et al., Applied Optics, 49 18 3474 (2010)

Radiation pressure links two test masses [1] This leads to a unstable mechanical mode Experienced in initial LIGO and mitigated by active alignment control [2][3] We will enter the unstable regime

Noise hunting (identification)

Continuous effort to identify sources and reduce noise

Introduction

Advanced LIGO

Experimental highlights and challenges

Prospects

Observation plans

- O1 (nominally Sep.- Dec. 2015)
 - 3 months
 - 40 80 Mpc range
- O2 (2016 2017 ?)
 - 6 months
 - 80 120 Mpc range
- O3 (2017 2018 ?)
 - 9 months 110 - 170 Mpc range

* Strongly depend on how the commissioning activities go

Example Noise Progression

Detection Rate

plot from L.Barsotti and P.Fritschel, LIGO-T1200307-v4

Introduction

Advanced LIGO

Experimental highlights and challenges

Prospects

- Installation completed at both observatories
- Both observatories achieved full lock and demonstrated stable operation
- Currently in a low power state to improve noise and duty-cycle
- The planned 1st observation run starts Sep. 2015 with 40-80 Mpc sensitivity.