
Guardian “core” status and roadmap

Jameson Graef Rollins

aLIGO integration meeting
January 16, 2015

LIGO-G1500065

Guardian

http://dcc.ligo.org/G1500065
https://awiki.ligo-wa.caltech.edu/aLIGO/Guardian


Current core installations

L1
Core r1063 (top node: r1134)
EZCA r274
Newer version for L1 top node to accommodate passive
node monitoring improvements for ER6.

H1
Core r1083
EZCA r322

New release ready for deployment in ∼2 weeks, includes the
following new features:

2/19



New features

request any state in graph
Requests no longer limited to states that have been labeled
request=True; any state in the system can be requested.
The requestable/non-requestable distinction will continue to
have value in highlighting “end point” states and exposing
them in the main control interface.

Working on new interface to allow easier selection of
arbitrary states.

3/19



New features

edge weights
Edges can now be assigned arbitrary “weights”. The default
weight is 1. Execution paths are chosen based on the lowest
total path weight (sum of all edge weights) to the requested
state.

Current path calculation behavior is unchanged if no weights
are specified.

fix handling of IFO-rooted channels
These should no longer produce channel access errors or
memory leaks.

4/19



New features

execution times recorded
Execution time of main and run methods is recorded, both
as elapsed time and total execution time of last method.
Provides user feedback for states that are taking overly long
to execute.

improved manager interface
Managers register their names with their subordinates.
MANAGED is a separate flag (no longer a system MODE).
Managers can now detect if a subordinate has been hijacked
and can fault accordingly.

5/19



New features

dynamic, automatic code archiving
All system user code is automatically committed to a system
code archive at initialization and after RELOAD. Provides a
permanent record of all running code at any given point in
time, regardless of USERAPPS commit status. Allows
ability to view graphs of currently running system, versus
just those of development code.

6/19



New features

notification message cycling
Up to ten notify() messages will be queued and auto
rotated in the USERMSG message box. Messages are
cleared if the notification didn’t occur in the last cycle.

state decorators can return False for the state
State decorator pre-exec functions can now bypass further
state execution if they return False, not just when they True
or a jump target.

Shouldn’t affect deployed decorators, but need to check.

7/19



New features

non-redirectable “protected” states
States can be labeled redirect=False to indicate that the
state can not be redirected to a GOTO target until the state
returns True. This is intended for “fault” states that should
not be left until a fault condition clears. This replaces the
current flaky protection heuristic based on jump history.

BEHAVIOR CHANGE: All states that should be protected
(e.g. fault states) will need the new redirect=False flag to
be set.

8/19



New features

requests no longer rejected based on lack of path
Requests are no longer rejected if there is no direct path to
the requested state. All requests are accepted. If there is no
path to the requested state, the target will be set to the
current state and the system will not advance from the
current state. Needed for monitor-only nodes.

BEHAVIOR CHANGE: Requesting an inaccessible state
while the system is traversing a path will now cause the
system to stall. This is ameliorated by making sure all
graphs are well-connected (as I believe all currently deployed
system graphs are). Could instead have nodes continue to
last valid request.

9/19



New features

EZCA library now records all set points
The ezca interface now records all channel access writes to
an internal table. Nodes can be told to automatically check
all set points during execution and either alarm or fault
upon detection of external changes.

This only works if there are no external channel
access calls in e.g. external “subprocess” scripts. All
ezca calls need to use internal Epics object. Need to take
accounting of where external scripts are still being utilized.

Issues remain: Full coverage will require synchronization of
setpoints with any BURT snapshots or front end settings
definition files to be loaded. Almost certainly requires
declaring all setting channels at load time, e.g. in a module
attribute.

10/19



Settings monitoring

The union of front end and guardian settings monitoring would
cover almost all channels in the system. Some channels would
remain uncovered:

Beckhoff May be possible to port front end settings
monitoring sequencer code into TwinCAT IOC.
TCS HWS IOCs
others?

Could deploy monitor-only guardian nodes to watch whatever
channels remain.

11/19



Still needed

ezca writes are slow
better NDS access management
anything else?

12/19



Improvements to SUS alignment offset
handling



Issues with SUS alignment offsets

no way to know if current offsets correspond to ALIGNED
or MISALIGNED state
relies on remembering to save offsets to text files that are
not well managed. If user forgets to save, alignment can be
lost.
no way to track ALIGNED vs. MISALIGNED offset values
over time.

14/19



Proposal to address the issues

ECR E1400107, integration bugzilla 746
Store ALIGNED and MISALIGNED offset values in
separate EPICS records, with switch to switch between
them.

Setting offsets would be done on a per-state basis.
Offsets for each state would always be up-to-date, and
stored separately in frames. Would allow for previously
unavailable trending of ALIGNED offset values.
SUS guardians could have ALIGNED and MISALIGNED
states that would simply flip the alignment switch
appropriately, with no worry that it would restore to
out-of-date values.
Simply select MISALIGNED to go to known good
misalignment value, without having to touch offsets.
Trivially restore to last ALIGNED value.

15/19

https://dcc.ligo.org/LIGO-E1400107
https://services.ligo-wa.caltech.edu/integrationissues/show_bug.cgi?id=746


Proposed changes

Changes to be made:

Break out OPTICALIGN front-end logic into separate
common OPTICALIGN library block for all suspensions
(should be done anyway), with corresponding common
OPTICALIGN MEDM screen.
Add new PIT/YAW records for alignment states
(ALIGNED/MISALIGNED/MISC), with a ganged
ramping switch to handle switching PIT and YAW offsets
simultaneously.
Implement switch logic that writes appropriate offset into
common OFFSET slider upon switching, and records
current slider value into appropriate alignment record.
Modify all SUS models to point to new OPTICALIGN
library block.

16/19



MEDM interface

A single channel/slider can be used to control the current offset
value, with a switch to select which alignment state the current
value corresponds to.

17/19



MEDM interface

A single channel/slider can be used to control the current offset
value, with a switch to select which alignment state the current
value corresponds to.

18/19



Discussion

Need way to recover last alignment after unexpected
shutdowns (power outage, etc.). Make functions to recover
values from frames or conlog.
Do we need more than three alignment states (ALIGNED,
MISALIGNED, MISC)?
Do MISLIGNED values ever need to be set relative to
ALIGNED values?

19/19


	Improvements to SUS alignment offset handling

