Laying a foundation for confident transient gravitational wave observations

Characterizing the Advanced LIGO instruments

Jess McIver for the LIGO Detector Characterization Group January 20, 2015

Advanced LIGO

Columba.

Supercluster G1401311

Livingston has surpassed iLIGO

Credits: Image by Beverly Berger Cluster Map by Richard Powell

aLIGO instrumental improvements

G1401311

•

ALS

ETMY

Timeline: from eLIGO to aLIGO

Timeline: from eLIGO to aLIGO

Timeline: installation and testing

Timeline: the lead up to the first observing run

The challenges of commissioning

- Many effects cannot be tested prior to large scale implementation
- Often noise sources stem from the interaction of different subsystems and cavities

Lessons from the past

GW search pipelines are adversely affected by non-Gaussian data!

Long tails (outliers) in all-sky GW burst search background triggers greatly restrict achievable false alarm rate. Non-Gaussian noise confuses parameter estimation for all transient searches.

Example: NINJA2 search results

G1401311

arvix 1401.0939

A normalized spectrogram of Hanford recolored noise only

showing a transient event, or glitch, that happens to occur at the time of the injection.

Solid blue – the 95% credible region for mass estimation based on EOBNRv2 analysis using realistic recolored noise. Dashed pink – in Gaussian noise.

Example: Transient seismic motion – a known and troublesome problem during S6.

arXiv preprint 1410.7764

Transient seismic motion – a known and troublesome problem during S6.

arXiv preprint 1410.7764

Recent data from Advanced LIGO Highlights of DQ features most troublesome for the transient searches

An early DQ issue diagnosis

G1401311

Through the lens of a single ifo burst GW pipeline

Calibrated DARM (differential arm length)

8 hours on August 9th 2014

G1401311

The mechanism : major carry transition DAC glitching

The mechanism : major carry transition DAC glitching

First dubbed "zero crossing" glitches – identified when vertex cavity actuation signals crossed zero.

Actually a subset of a broader known issue with these DACs.

The mechanism : major carry transition DAC glitching

Major-carry transitions (MCTs): value transitions that cause a most significant bit(s) to change

Offset applied to vertex cavity actuation

Offset applied to vertex cavity actuation

End station actuator glitches identified

The Detector Characterization group also identified this behavior in one of the end stations at the 2^16 MCT

MCT glitching was later addressed with calibration of DACs – the offsets were removed in mid December

Fs=16,384Hz, sec/fft = 1.00, overlap = 0.40, fft length=16,384, #-FFT = 199, bw = 1, in samples = 1,966K, low = 0.20

Return of DAC glitches After ER6, loud glitches were observed in DARM that coupled with the vertex cavities (SRCL, PRCL, MICH)

> LLO alog 16354

Fs=16,384Hz, sec/fft = 0.25, overlap = 0.60, fft length=4,096, #-FFT = 199, bw = 4, in samples = 328K, low = 0.20

Wasn't DAC glitching fixed?

Fs=16,384Hz, sec/fft = 0.25, overlap = 0.60, fft length=4,096, #-FFT = 199, bw = 4, in samples = 328K, low = 0.20

ER6 DAC calibration drift – week 1

L1:SUS-MC2_M3_NOISEMON_UR_DQ 2014-12-23 06:30:00 - 1,103,351,416 (20s)

Frequency (Hz

ER6 DAC calibration drift – week 2

L1:SUS-MC2 M3 NOISEMON UR DQ 2014-12-31 06:00:00 - 1,104,040,816 (20s)

ER6 DAC calibration drift – week 3

L1:SUS-MC2_M3_NOISEMON_UR_DQ 2015-01-03 08:00:00 - 1,104,307,216 (20s)

Fs=2.048Hz, sec/fft = 0.25, overlap = 0.60, fft length=512, #-FFT = 199, bw = 4, in samples = 41K, low = 0.20

Distinct "whistling" feature stemming from a beat frequency (WRT -817kHz) in the IMC that adversely affected the **BBH** search in ER6

Summary: LLO alog 16298

L1:OAF-CAL_DARM_DQ 2014-12-15 08:27:00 - 1,102,667,236 (60s)

Fs=16,384Hz, sec/fft = 0.10, overlap = 0.50, fft length=1,638, #-FFT = 1199, bw = 10, in samples = 983K, low = 0.20

Summary: LLO alog 16298

L1:OAF-CAL_DARM_DQ 2014-12-15 08:27:00 - 1,102,667,236 (60s)

Fs=16,384Hz, sec/fft = 0.10, overlap = 0.50, fft length=1,638, #-FFT = 1199, bw = 10, in samples = 983K, low = 0.20

74 (72) Hz line – related to EY ring heater driver

LLO alogs 16316, 16291

L1:OAF-CAL_DARM_DQ at 16384 Hz, t=100 s

PZT-actuated mirror placement - 250Hz

LLO alog 16331

L1:OAF-CAL_DARM_DQ at 16384 Hz, t=100 s

SEI transient propagation

Tracing the transient motion from the ground to the optic table in various states of isolation loop aggression. More aggressive isolation mitigates transients well < ~15Hz

Windy vs. Quiet time transient SEI study at LHO

Most of the day, Oct 11, high microseism, low wind (~5MPH)

Windy vs. Quiet time transient SEI study at LHO

Below are Omicron triggers of two hours of "quiet" time (left) and "windy" time (right). Each dot is a transient event. Transient motion amplitude is very elevated during high wind for events of freq < ~30Hz.

The rate of transient motion events also increases dramatically during windy time – by over a factor of 10 in optic table motion at end X.

		and the second	
Stage	Quiet* (# trigs)	Windy* (# trigs)	Factor increase
Ground motion	30,755	116,601	3.8
HEPI (L4C)	21,317	74,624	3.5
ISI ST1 (T240)	7,791	57,948	7.4
ISI ST2 (GS13)	3,924	49,562	12.6

* For a two hour period of relatively quiet or windy time

Isolated stages see a much greater increase in the rate of transients than ground motion during windy time.

> Note: these plots show ETMX local ground motion, not LVEA

Conclusions for windy vs. quiet SEI transient study:

Ultimately, at the optic table the transient motion amplitude per event isn't significantly increased above 10-15Hz, but the rate of transients is greatly increased

Time [minutes] from 2014-10-11 21:10:40 (1097097056.0)

Livingston ER6 -Dec 16 lock

LLO alog 16101: "violin modes appear to be causing high trigger rate in CBC search" (als o reported by cWB)

LLO alog 16101: "violin modes appear to be causing high trigger rate in CBC search" (als o reported by cWB)

Seismically quiet part of lock

Logging stretch of lock

whole!

that would

affect the

transient

resolved

now

L1 gravitational-wave strain h(t)100ER6 glitch rate 10^{3} looked very (SNR) 50clean on the Hz Signal to noise ratio Frequency Most features 10010searches are understood/ 510Science 12166 8 1014 Time [hours] from 2014-12-16 00:00:00

Conclusions

- Thanks largely to commissioning efforts, LLO data looks GREAT! Greatly improved glitch rate compared to August.
 - Already characterizing Hanford at a subsystem level.
 - Other noise features that are troublesome to the transient searches will undoubtedly surface as the ifos evolve and commissioners dig into the noise floor.
- Detchar has very good handle on potential DQ features that would most affect the search backgrounds.