
Draft version October 22, 2014
Preprint typeset using LATEX style emulateapj v. 12/16/11

MODELLING CALIBRATION ERRORS IN CBC WAVEFORMS

Will M. Farr
School of Physics and Astronomy

University of Birmingham
Birmingham

B15 2TT
United Kingdom

Benjamin Farr
The Enrico Fermi Institute

University of Chicago
Chicago IL 60637
United States

and

Tyson Littenberg
Center for Interdisciplinary Education and Research in Astrophysics

Northwestern University
Evanston IL 60208

United States

Draft version October 22, 2014

ABSTRACT

We present a useful parameterisation and a flexible model for the effects of calibration errors in
gravitational wave detectiors on measured gravitational waveforms.

1. CALIBRATION ERRORS

When a gravitational wave with a frequency-domain
waveform h̃(f) enters our detector, we assume it records
a data stream (again in the frequency domain) that is an
additive combination of a waveform and noise:

d̃(f) = h̃obs(f) + ñ(f). (1)

Because the detector is not perfectly calibrated, however,
there are frequency-dependent amplitude and phase er-
rors in h̃obs with respect to h̃:

h̃obs(f) = h̃(f) (1 + δA(f)) exp (iδφ(f)) . (2)

We expect these calibration errors to be small, and
smoothly varying in frequency. Because we expect to
have to implement calibration adjustments to our wave-
forms in an MCMC, it is better to use the slightly-
modified model

h̃obs(f) = h̃(f) (1 + δA(f))
2 + iδψ(f)

2− iδψ(f)
. (3)

The ratio involving δψ is chosen so that it always has
complex amplitude 1 (i.e. it is a pure phase shift), and
it agrees with the complex exponential to third order in
δφ or δψ:

2 + iδψ(f)

2− iδψ(f)
= exp(iδψ) +O

(
δψ3

)
, (4)

but it nonetheless involves only algebraic operations, not
transcendental ones and is therefore more efficient in its
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Fig. 1.— The relationship between δψ (Eq. (3)) and the phase
shift δφ. In the range −∞ < δψ <∞, −π < δφ < π.

implementation. A plot of the relationship between δψ
and δφ appears in Figure 1.

2. SPLINE MODEL

Given a parameterised model for the calibration errors,
we could fit them out. A good model for the smooth
calibration errors could be splines, for example

δA(f) = ps (f ; {fi, δAi}) (5)



2

and
δψ(f) = ps (f ; {fi, δφi}) , (6)

where ps is a cubic spline polynomial, the fi are the nodes
of the polynomial in frequency, and δAi and δψi are the
values of the spline at those nodal points. The parame-
ters of this model are then the δAi and the δψi (and a
more general model could also include the nodal points,
fi, as parameters). Each detector will have independent
calibration parameters in a multi-detector analysis. Fol-
lowing Vitale et al. (2012), we will choose nodal points
equally spaced in log f ; this choice constrains the corre-
lation length of the calibration errors in frequency space.

Because the calibration errors are expected to be small,
it seems reasonable to place a Gaussian prior on the cal-
ibration error parameters

p (δAi) = N(0, σA) (7)

and
p (δψi) = N(0, σψ), (8)

where σA and σψ characterise our expected uncertainty
about the magnitude of the calibration error at these
frequencies. These parameters can then be fit and the
corresponding calibration errors marginalised over in a
run of one of the LALInference samplers.

The facility described in this note has been added by
the authors to LALInference, and investigations are on-
going.

3. AR(1) MODEL

If we assume, as in Vitale et al. (2012), that the correla-
tion length of the calibration errors at a given frequency
is proportional to that frequency, then the calibration er-
rors have a constant correlation length in log f . It may
be reasonable to assume that the errors are stationary in
log f and have an autocovariance function of the form

〈δA (fi) δA (fj)〉 = σ2
A exp

(
−|log fi − log fj |

τA

)
, (9)

where σ2
A is the variance of the amplitude error gener-

ating process, and τA the correlation length. As shown
in Farr (2014), such an autocorrelation can be generated
by an unevenly sampled1 AR(1) (i.e. single-step, linear,
recursive) process:

δA (fi+1) = αidA (fi) + βi, (10)

where

αi = exp

(
−|log fi+1 − log fi|

τA

)
(11)

and

βi ∼ σA
√

1− α2
i ×N(0, 1). (12)

To start the recursion, we have the initial value

δA(f0) ∼ N (0, σA) . (13)

A sample track of δA generated by such a process appears
in Figure 2.

In this model, the σA, τA, σψ, and τψ are hyperpa-
rameters, and the values of the calibration errors at each
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Fig. 2.— A sample of the latent calibration parameters drawn
from the AR(1) process of § 3 with parameters σA = 0.05 and
τA = 1.

frequency are latent variables generated by the above
process controlled by the hyperparameters. The dimen-
sionality of the calibration model is very large (two cali-
bration parameters per frequency bin), but perhaps the
constraint of the AR(1) model with only two hyperpa-
rameters is strong enough to enable good fitting.

This model is not yet implemented in LALInference.
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1 Unevenly sampled because the frequencies are not uniformly
spaced in log f .


