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ABSTRACT
Advanced ground-based gravitational-wave (GW) detectors begin operation imminently. Their intended goal
is not only to make the first direct detection of GWs, but also to make inferences about the source systems.
Binary neutron-star mergers are among the most promising sources. We investigate the performance of the
parameter-estimation (PE) pipeline that will be used during the first observing run of the Advanced Laser
Interferometer Gravitational-wave Observatory (aLIGO) in 2015: we concentrate on the ability to reconstruct the
source location on the sky, but also consider the ability to measure masses and the distance. Accurate, rapid sky-
localization is necessary to alert electromagnetic (EM) observatories so that they can perform follow-up searches
for counterpart transient events. We consider PE accuracy in the presence of non-stationary, non-Gaussian
noise. We find that the character of the noise makes negligible difference to the PE performance at a given
signal-to-noise ratio. The source luminosity distance can only be poorly constrained, the median 90% (50%)
credible interval scaled with respect to the true distance is 0.85 (0.38). However, the chirp mass is well measured.
Our chirp-mass estimates are subject to systematic error because we used gravitational-waveform templates
without component spin to carry out inference on signals with moderate spins, but the total error is typically
less than 10−3M�. The median 90% (50%) credible region for sky localization is ∼ 600 deg2 (∼ 150 deg2),
with 3% (30%) of detected events localized within 100 deg2. Early aLIGO, with only two detectors, will have
a sky-localization accuracy for binary neutron stars of hundreds of square degrees; this makes EM follow-up
challenging, but not impossible.
Keywords: gravitational waves — methods: data analysis — stars: neutron — surveys

1. INTRODUCTION
The goal of gravitational-wave (GW) astronomy is to learn

about the Universe through observations of gravitational radia-
tion. This requires not only the ability to detect GWs, but also
to infer the properties of their source systems. In this work, we
investigate the ability to perform parameter estimation (PE) on
signals detected by the upcoming Advanced LIGO (aLIGO)
instruments (Harry 2010; Aasi et al. 2015) in the initial phase
of their operation (Aasi et al. 2013b).
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Compact binary coalescences (CBCs), the GW-driven inspi-
ral and merger of stellar-mass compact objects, are a prime
source for aLIGO and Advanced Virgo (AdV; Acernese et al.
2009, 2015). Binary neutron-star (BNS) systems may be the
most abundant detectable CBCs (Abadie et al. 2010). We focus
on BNS mergers in this study.

Following the identification of a detection candidate, we
wish to extract the maximum amount of information from the
signal. It is possible to make some inferences using selected
components of the data. However, full information regarding
the source system, including the component objects’ masses
and spins, is encoded within the gravitational waveform, and
can be obtained by comparing the data to theoretical waveform
models (Cutler & Flanagan 1994; Jaranowski & Krolak 2012).
Doing so can be computationally expensive.

PE is performed within a Bayesian framework. We use
algorithms available as part of the LALINFERENCE toolkit
for the analysis of CBC signals. The most expedient code
is BAYESTAR (Singer et al. 2014; Singer 2014), which infers
sky location from data returned from the detection pipeline.
Exploring the posterior probability densities for the param-
eters takes longer for models where the parameter space is
larger or the likelihood is more complicated. Calculating es-
timates for parameters beyond sky location is done using the
stochastic-sampling algorithms of LALINFERENCE (Veitch
et al. 2015). There are three interchangeable sampling al-
gorithms: LALINFERENCE_NEST (Veitch & Vecchio 2010),
LALINFERENCE_MCMC (van der Sluys et al. 2008a; Ray-
mond et al. 2009) and LALINFERENCE_BAMBI (Graff et al.
2012), which we refer to as LALINFERENCE for short. These
compute waveform templates for use in the likelihood. Us-
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ing the least computationally expensive waveforms allows for
posteriors to be estimated on timescales of hours to days; po-
tentially more accurate estimates can be calculated with more
expensive waveforms. In this paper, we discuss what can be
achieved using low-latency (BAYESTAR) and medium-latency
(LALINFERENCE with inexpensive waveforms) PE; a sub-
sequent paper will evaluate what can be achieved on longer
timescales using more expensive waveform templates.

With the detection of GWs, it is also possible to perform
multi-messenger astronomy, connecting different types of ob-
servations of the same event. BNS mergers could be accom-
panied by an electromagnetic (EM) counterpart (Metzger &
Berger 2012). To associate an EM event with a GW signal, it
is beneficial to have an accurate sky location: timing informa-
tion can also be used for EM signals that are independently
detected, such as gamma-ray bursts (Aasi et al. 2014b). To
provide triggers for telescopes to follow up a GW detection, it
is necessary to provide rapid sky localization.

Several large-scale studies investigated the accuracy with
which sky position can be reconstructed from observations
with ground-based detector networks. The first only used tim-
ing information from a multi-detector network to triangulate
the source position on the sky (e.g., Fairhurst 2009, 2011).
Subsequently, further information about the phase of the grav-
itational waveform was folded into the timing triangulation
(TT) analysis (Grover et al. 2014). The most sophisticated tech-
niques perform a coherent Bayesian analysis to reconstruct
probability distributions for the sky location (e.g., Veitch
et al. 2012; Nissanke et al. 2013; Kasliwal & Nissanke 2014;
Grover et al. 2014; Sidery et al. 2014). Singer et al. (2014)
used both BAYESTAR and LALINFERENCE to analyse the
potential performance of aLIGO and AdV in the first two
years of their operation. They assumed the detector noise
was stationary and Gaussian. Here, we further their studies
(although we use the same analysis pipeline) by using a set
of injections into observed noise from initial LIGO detectors
recoloured (see section 2.1) to the expected spectral density of
early aLIGO.15 This provides results closer to those expected in
practice, as real interferometer noise includes features such as
non-stationary glitches (Aasi et al. 2013b, 2014a). Our results
are just for the first observing run (O1) of aLIGO, expected
in the latter half of 2015, assuming that this occurs before the
introduction of AdV. As the sensitivity of the detectors will
increase with time, and because the introduction of further
detectors increases the accuracy of sky localization (Schutz
2011), these set a lower bound for the advanced-detector era.
Estimates for sky-localization accuracy in later observing peri-
ods can be calibrated using our results.

PE beyond sky localization, considering the source system’s
mass, spin, distance and orientation, has been subject to similar
studies. The initial investigations estimated PE using the Fisher
information matrix (e.g., Cutler & Flanagan 1994; Poisson &
Will 1995; Arun et al. 2005). This only gives an approximation
to true PE potential (Vallisneri 2008). More reliable (but com-
putationally expensive) results are found by simulating a GW
event and analysing it using PE codes, mapping the posterior
probability distributions (e.g., Röver et al. 2006; van der Sluys
et al. 2008b; Veitch & Vecchio 2010; Rodriguez et al. 2014).
This has even been done for a blind injection during the run of

15 We refer to the noise as recoloured as it is first whitened (removing its
colour), to eliminate initial LIGO’s frequency dependence, and then passed
through a linear response filter (reintroducing colour) so that, on average, it
has the aLIGO spectral density.

initial LIGO (Aasi et al. 2013a). As with sky-localization, gen-
eral PE can improve with the introduction of more detectors to
the network (Veitch et al. 2012).

To be as faithful as possible, our analysis is performed using
one of the pipelines intended for use during O1. We make
use of the LIGO Scientific Collaboration Algorithm Library
(LAL).16 In particular, we shall make use of GSTLAL,17 one
of the detection pipelines, to search for signals and LALIN-
FERENCE for PE on detection candidates.

We begin by describing the source catalogue and detector
sensitivity curve used for this study in section 2. In section
3 we explain how the data is analysed to produce sky areas
and other parameter estimates. Many details from these two
sections are shared with the preceding work of Singer et al.
(2014), which can be consulted for further information. In
section 4 we present the results of our work. We first discuss
the set of events that are selected by the detection pipeline in
section 4.1 (with supplementary information in appendix A);
then we examine PE, considering sky-localization accuracy in
section 4.2, and mass and distance measurements in section
4.3. We conclude with a discussion of these results in section
5; this includes in section 5.1.2 an analysis of estimates for sky
localization in later observing periods with reference to our
findings. Estimates of the computational costs associated with
running BAYESTAR and full LALINFERENCE PE are given in
appendix B. A supplementary catalogue of results is described
in appendix C, with data available at http://www.ligo.
org/scientists/first2years/.

Our main findings are:

1. The detection pipeline returns a population of sources
that is not significantly different from the input astro-
physical population, despite a selection bias based upon
the chirp mass.

2. Both BAYESTAR and LALINFERENCE return compara-
ble sky-localization accuracies (for a two-detector net-
work). The latter takes more computational time (a total
CPU time of ∼ 106 s per event compared with ∼ 103 s),
but returns estimates for more parameters than just loca-
tion.

3. At a given signal-to-noise ratio (SNR), the character of
the noise does not affect sky localization or other PE.

4. Switching from a detection threshold based upon SNR
to one based upon the false alarm rate (FAR) changes
the SNR-distribution of detected events. A selection
based upon FAR includes more low-SNR events (the
distribution at high SNRs is unaffected).

5. TT provides a poor predictor of sky localization for a
two-detector network; it does better (on average) for
a three-detector network when phase coherence is in-
cluded, but remains imperfect.

6. Systematic errors from uncertainty in the waveform tem-
plate are significant for chirp-mass estimation. Neglect-
ing the mass–spin degeneracy by using non-spinning
waveforms artificially narrows the posterior distribution.

16 http://www.lsc-group.phys.uwm.edu/lal
17 https://www.lsc-group.phys.uwm.edu/daswg/

projects/gstlal.html
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Figure 1. Initial and Advanced LIGO noise amplitude spectral densities. The
upper line is the measured sensitivity of the initial LIGO Hanford detector dur-
ing S6 (Aasi et al. 2014a). The dashed line shows the early aLIGO sensitivity
and the lower solid line the final sensitivity (Barsotti & Fritschel 2012). The
early sensitivity is used as a base here.

For O1, we find that the luminosity distance is not well-
measured, the median 50% credible interval (interquartile
range) divided by the true distance is 0.38 and the median
90% credible interval divided by the true distance is 0.85. De-
spite being subject to systematic error, the chirp mass is still
accurately measured, with the posterior mean being less than
10−3M� from the true value in almost all (96%) cases. We find
that the median area of 50% sky localization credible region
is 154 deg2 and the median area of the 90% credible region is
632 deg2; the median searched area (area of the smallest credi-
ble region that encompasses the source location) is 132 deg2.
EM follow-up to BNS mergers in 2015 will be challenging and
require careful planning.

2. SOURCES AND SENSITIVITIES
Our input data consists of two components: simulated detec-

tor noise and simulated BNS signals. We describe the details
of these in the following subsections, before continuing with
the analysis of the data in section 3.

2.1. Recoloured 2015 noise
We consider the initial operation of the advanced detectors

at LIGO Hanford and LIGO Livingston. The sensitivity is
assumed to be given by the early curve of Barsotti & Fritschel
(2012), which has a BNS detection range of ∼ 55 Mpc (as-
suming Gaussian noise). This configuration corresponds to the
2015 observing scenario in Aasi et al. (2013b). Figure 1 plots
the noise spectral density, the square root of the power spec-
tral density (Moore et al. 2015), as measured during the sixth
science (S6) run of initial LIGO,18 the early aLIGO sensitivity
curve, and final aLIGO curve (Shoemaker 2010).

The noise is constructed from data from the S6 run of initial
LIGO (Christensen 2010; Aasi et al. 2014a), recoloured to
the early aLIGO noise spectral density as was done for Aasi
et al. (2014c). We use real noise, instead of idealised Gaussian
noise, to try to capture a realistic detector response including
transients; however, the S6 noise can only serve as a proxy
for the actual noise in aLIGO since the detectors are differ-
ent. Two calendar months (21 August 2010–20 October 2010)

18 http://www.ligo.caltech.edu/~jzweizig/
distribution/LSC_Data/

of S6 data were used. The recoloured data are constructed
using GSTLAL_FAKE_FRAMES.19 The recolouring process
can be thought of as applying a finite-impulse response fil-
ter to whitened noise. The result is a noise stream that, on
average, has the same power spectral density as expected for
early aLIGO, but contains transients that are similar to those
found in S6. Recolouring preserves the non-stationary and
non-Gaussian features of the noise, although they are distorted
(Aasi et al. 2014c). The recoloured noise is the most realistic
noise we can construct ahead of having the real noise from
aLIGO.

2.2. Binary neutron-star events
BNS systems constitute the most probable and best under-

stood source of signals for advanced ground-based GW de-
tectors. There is a wide range in predicted event rates as a
consequence of uncertainty in our knowledge of the astro-
physics. Abadie et al. (2010) gives a BNS merger rate for the
full-sensitivity aLIGO–AdV network of 0.01–10 Mpc−3 Myr−1,
with 1 Mpc−3 Myr−1 as the most realistic estimate (Kalogera
et al. 2004).

We use the same list of simulated sources as in Singer et al.
(2014). The neutron-star masses are uniformly distributed
from mmin = 1.2M� to mmax = 1.6M�, which safely encom-
passes the observed mass range of BNS systems (Kiziltan et al.
2013). Their (dimensionless) spin magnitudes are uniformly
distributed between amin = 0 and amax = 0.05. The most rapidly
rotating BNS constituent to be observed in a binary that should
merge within a Hubble time is PSR J0737−3039A (Burgay
et al. 2003; Kramer & Wex 2009). This has been estimated
to have a spin within this range (Mandel & O’Shaughnessy
2010; Brown et al. 2012): since we do not know precisely the
neutron-star equation of state (Lattimer 2012), it is not possible
to exactly convert from a spin period to a spin magnitude. The
spin orientations are distributed isotropically. The binaries
are uniformly scattered in volume and isotropically orientated.
This set of parameters is motivated by our understanding of
the astrophysical population of BNSs.

The GW signals were constructed using a post-Newtonian
(PN) inspiral template, the SpinTaylorT4 approximant (Buo-
nanno et al. 2003, 2009) which is a time-domain approximant
accurate to 3.5PN order in phase and 1.5PN order in amplitude.
There exist more accurate but more expensive waveforms. This
template only contains the inspiral part of the waveform and
not the subsequent merger: this should happen outside of the
sensitive band of the detector for the masses considered and so
should not influence PE (Mandel et al. 2014). We do not use
SpinTalyorT4 templates either for detection or PE, instead we
use a less expensive approximant. In a future study, we shall
investigate the effects of using SpinTaylorT4 templates for PE,
such that the injection and recovery templates perfectly match.

3. ANALYSIS PIPELINE
To accurately forecast sky localization prospects in O1,

we run our simulated events through the same data-analysis
pipeline as is intended for real data. The results of this pipeline
are analysed in the next section (section 4). A GW search is
performed using GSTLAL_INSPIRAL (Cannon et al. 2010,
2011, 2012, 2013); this is designed to provide GW triggers
in real time with ∼ 10–100 s latency during LIGO–Virgo ob-
serving runs. A trigger is followed up for sky localization

19 https://ldas-jobs.ligo.caltech.edu/~gstlalcbc/
doc/gstlal-0.7.1/html/gstlal__fake__frames.html

http://www.ligo.caltech.edu/~jzweizig/distribution/LSC_Data/
http://www.ligo.caltech.edu/~jzweizig/distribution/LSC_Data/
https://ldas-jobs.ligo.caltech.edu/~gstlalcbc/doc/gstlal-0.7.1/html/gstlal__fake__frames.html
https://ldas-jobs.ligo.caltech.edu/~gstlalcbc/doc/gstlal-0.7.1/html/gstlal__fake__frames.html
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if its calculated FAR is less than 10−2 yr−1, which is roughly
equivalent to a network-SNR threshold of %& 12 (Aasi et al.
2013b).

In using the FAR to select triggers, our method differs from
that used in Singer et al. (2014). Since they considered Gaus-
sian noise, which is free of glitches, their FAR would not be
representative of those computed using real noise; the FAR cal-
culated with Gaussian noise corresponds to a SNR-threshold
that is too low for detection in realistic noise. Therefore, they
also imposed a network-SNR cut of %≥ 12, in addition to the
FAR selection. This joint SNR and FAR threshold was found
to differ negligibly from an SNR-only threshold: in effect,
they select by SNR alone. While this is a small difference in
selection criteria, we shall see in section 4.2 that this has an
impact on our sky-localization results.

To recover the GW signal, another PN inspiral approximant,
TaylorF2 (Damour et al. 2001, 2002; Buonanno et al. 2009),
was used as a template. This is a frequency-domain stationary-
phase approximation waveform accurate to 3.5PN order in
phase and Newtonian order in amplitude. It does not include
the effects of spin, although it can be modified to incorporate
these (Mikóczi et al. 2005; Arun et al. 2009; Bohé et al. 2013).
We neglect spin as this should not lead to a significant reduction
in detection efficiency for systems with low spins (Brown et al.
2012), which we confirm in section 4.1.2. TaylorF2 does not
incorporate as many physical effects as SpinTaylorT4, notably
it does not include precession, but is less computationally
expensive, permitting more rapid follow-up.

Rapid sky localization is computed using BAYESTAR (Singer
et al. 2014). This reconstructs sky position using a combination
of information associated with the triggers: the times, phases
and amplitudes of the signals at arrival at each detector. It
coherently combines this information to reconstruct posteriors
for the sky position. BAYESTAR makes no attempt to infer
intrinsic parameters such as the BNS masses and, hence, can
avoid computationally expensive waveform calculations. The
sky-position distributions can be formulated in under a minute
(see appendix B).

Full PE, computing posterior distributions for sky localiza-
tion parameters as well as the other parameters for the source
system like masses, orientation and inclination, is performed
using LALINFERENCE (Veitch et al. 2015). LALINFERENCE
maps the posterior probability distribution by stochastically
sampling the parameter space (e.g., MacKay 2003, chapter
29). There are three codes within LALINFERENCE to sample
these posterior distributions: LALINFERENCE_NEST (Veitch
& Vecchio 2010), a nested sampling algorithm (Skilling 2006);
LALINFERENCE_MCMC (van der Sluys et al. 2008a; Ray-
mond et al. 2009), a Markov-chain Monte Carlo algorithm
(Gregory 2005, chapter 12), and LALINFERENCE_BAMBI
(Graff et al. 2012), another nested sampling algorithm (Feroz
et al. 2009) which incorporates a means of speeding up like-
lihood evaluation using machine learning (Graff et al. 2014).
All three codes use the same likelihood and so should recover
the same posteriors; consistency of the codes has been re-
peatedly checked. While the codes produce the same results,
they may not do so in the same times, depending upon the
particular problem. All the results here were computed with
LALINFERENCE_NEST.

TaylorF2 waveforms were used again in constructing the
LALINFERENCE posterior. Since these do not exactly match
the waveforms used for injection, there may be a small bias
in the recovered parameters (Buonanno et al. 2009). Using
TaylorF2 is much less computationally expensive than using
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Figure 2. Cumulative fractions of events with network SNRs smaller than the
abscissa value. The SNR distribution assuming recoloured noise is denoted by
the thick solid line; we also show the distribution subject to a lower cutoff of
%≥ 12, denoted by the thin solid line. The SNR distribution for the complete
set of 630 events with Gaussian noise analysed with BAYESTAR is denoted
by the thinner dashed line and the distribution for the subset of 250 events
analysed with both BAYESTAR and LALINFERENCE is denoted by the thicker
dashed line (Singer et al. 2014). The 68% confidence intervals (1σ for a
normal distribution) are denoted by the shaded areas, these are estimated from
a beta distribution (Cameron 2011).

SpinTaylorT4, in this case a LALINFERENCE run takes ∼
106 s of CPU time (see appendix B).

4. RESULTS
4.1. Detection catalogue

We ran sky-localization codes on a set of 333 events recov-
ered from the detection pipeline. We shall compare these to
the results of Singer et al. (2014) who used Gaussian noise for
the same sensitivity curve. They ran BAYESTAR on a sample of
630 events, but only ran LALINFERENCE on a sub-sample of
250 events. We first consider the set of detected events before
moving on to examine sky-localization accuracies in section
4.2, and mass and distance measurement in section 4.3.

4.1.1. Signal-to-noise ratio distribution

Unsurprisingly, the distribution of SNRs differs between the
recoloured and Gaussian data sets. This is shown in figure
2. The recoloured SNR distribution includes a tail at low
SNR (% ' 10–12). If we impose a lower threshold % ≥ 12
for the recoloured data set, as was done for the Gaussian data
set, we find that the SNR distributions are similar. With the
shared SNR cut, the distributions agree within the expected
sampling error; performing a Kolmogorov–Smirnov (KS) test
(DeGroot 1975, section 9.5) comparing the recoloured SNR
distribution to the complete (LALINFERENCE only) Gaussian
SNR distribution returns a p-value of 0.311 (0.110).

Comparing injections between the recoloured and Gaussian
data sets, there are 255 events that have been detected in both
sets. There are 108 events shared between the recoloured data
set and the sub-sample of the Gaussian data set analysed with
LALINFERENCE. Considering individual events, we may con-
trast the SNR for recoloured noise %R and Gaussian noise %G.
The ratio of the two SNRs is shown in figure 3. Considering
the entire population of shared detections, the mean value of
the ratio of SNRs is %R/%G = 0.938±0.006, showing a small
downwards bias as an effect of the differing cutoffs used for
the two samples. To limit selection effects that could skew
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Figure 3. Comparison of SNRs from injections with Gaussian noise %G and
from injections with recoloured noise %R. (a) The ratio %R/%G as a function
of %G. The dashed line shows the locus of %R = 12. (b) Distribution of %R/%G
with both %G ≥ 12 and %R ≥ 12, using a bin width of 0.5. Events that fall
within the sub-sample of Gaussian events analysed with LALINFERENCE
are highlighted with blue (star-shaped points) and the complete set of events
detected in both the Gaussian and recoloured data sets is indicated by orange
(round points).

the distribution of the ratio of SNRs, we can impose an SNR
cut of %R ≥ 12. This reduces the number of events detected in
both noise sets to 214 using the full Gaussian set and 88 for
the LALINFERENCE Gaussian sub-sample. There is a small
difference between the SNR as calculated with Gaussian noise
and with recoloured noise. This does not appear to be a strong
function of the SNR. However, the scatter in the ratio decreases
as SNR increases, approximately decreasing as %−1. This is
as expected as the inclusion of random noise realisations in
the signal should produce fluctuations in the SNR of order ±1;
these fluctuations become less significant for louder events.
After imposing the cut %≥ 12 on both sets, the mean value of
the ratio of SNRs is %R/%G = 0.955±0.006. Although there
is a small difference in SNRs, we shall see that this does not
impact our PE results.

4.1.2. Selection effects

The population of detected events should not match exactly
the injected distribution; depending upon their parameters,
some systems are louder and hence easier to detect. Here,
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Figure 4. Cumulative fractions of detected events with chirp masses smaller
than the abscissa value. Results using recoloured noise are denoted by the
solid line, and results from the subset of 250 events with Gaussian noise
analysed with LALINFERENCE are denoted by the dashed line (Singer et al.
2014). The 68% confidence intervals are denoted by the shaded areas. The
injection distribution, based upon a uniform distribution of component masses,
is indicated by the dot–dashed line.

we look at the selection effects of the most astrophysically
interesting parameters: mass and spin. We expect there to be a
selection based upon mass, as the component masses set the
amplitude of the waveform. We do not expect there to be a
dependence upon the spin because the spin magnitude is small,
but since we injected with a spinning waveform and recov-
ered with a non-spinning waveform, there could potentially
be a selection effect due to waveform mismatch. Checking
these distributions confirms the effectiveness of the detection
pipeline for this study.

To leading order, the GW amplitude is determined by the
(5/6 power of the) chirp mass (Sathyaprakash & Schutz 2009)

Mc =
(m1m2)3/5

(m1 + m2)1/5 , (1)

where m1 and m2 are the individual component masses. We
therefore expect to preferentially select systems with larger
chirp masses.

Figure 4 shows the recovered distribution of (injected) chirp
masses and the injection distribution (which is calculated nu-
merically). We do detect fewer systems with smaller chirp
masses (and more with larger chirp masses), as indicated by
the curve for the recovered distribution lying below the curve
for the injection distribution. However, this selection effect
does not alter the overall character of population. The differ-
ence is only marginally statistically significant with this num-
ber of events (a KS test with the injection distribution yields
p-values of 0.315 and 0.068 for the Gaussian and recoloured
noise respectively). This is consistent with expectations for
this narrow chirp-mass distribution; in appendix A we use a
simple theoretical model to predict that we would need ∼ 103

detections (or a broader distribution of chirp masses in the in-
jection set) to see a significant difference between the injected
and recovered populations. The character of the noise does not
influence the chirp-mass distribution (a KS test gives a p-value
of 0.999).

For completeness, in appendix A we present the distributions
for the individual component masses, the asymmetric mass
ratio and the total mass. The selection effects on these depend
upon their correlation with the chirp mass; the total mass,
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Figure 5. Cumulative fractions of detected events with spin magnitudes
smaller than the abscissa value. The spin distribution for the first neutron star
a1 is denoted by the solid line, and the distribution for the second neutron
star a2 is denoted by the dashed line. Results using recoloured noise are
denoted by the thicker red–purple lines, and results from the subset of 250
events with Gaussian noise analysed with LALINFERENCE are denoted by the
thinner blue–green lines (Singer et al. 2014). The 68% confidence intervals
are denoted by the shaded areas. The expected distribution for spins uniform
from amin = 0 to amax = 0.05 is indicated by the black dot–dashed line.

which is most strongly correlated with the chirp mass, shows
the most noticeable difference between injection and detected
distributions.

Since we injected with a spinning waveform and recovered
with a non-spinning waveform, there could also be a selection
bias depending upon the spin magnitude. Figure 5 shows
the recovered distribution of (injected) spins. The detected
events are consistent with having the uniform distribution of
spins used for the injections. We conclude that the presence of
spins with magnitudes a≤ 0.05 does not affect the detection
efficiency for BNS systems, in agreement with Brown et al.
(2012).

4.2. Sky-localization accuracy
The recovered sky positions from BAYESTAR and LAL-

INFERENCE appear in good agreement. A typical exam-
ple of the recovered posterior probability density is shown
in figure 6. This is a bimodal distribution, reflecting the
symmetry in the sensitivity of the detectors, which is com-
mon (Singer et al. 2014). We use geographic coordinates
to emphasise the connection to the position of the detec-
tors. A catalogue of results can be viewed online at http:
//www.ligo.org/scientists/first2years/ (see
appendix C).

To quantify the accuracy of sky localization, we use credible
regions: areas of the sky that include a given total posterior
probability. We denote the credible region for a total posterior
probability p as CRp: it is defined as

CRp ≡minA (2)

such that the sky area A satisfies

p =
∫

A
dΩPΩ(Ω), (3)

where PΩ(Ω) is the posterior probability density over sky po-
sition Ω (Sidery et al. 2014). A smaller CRp at a given p
indicates more precise sky localization.

We also consider the searched area: the area of the smallest
credible region that includes the true location, and, hence, the

area of the sky that we expect would have to be observed before
the true source was found.

The self-consistency of our sky areas can be checked by
calculating the fraction of events that fall within the credible
region at the given probability. We expect that a fraction p of
true sky positions are found within CRp; that is the frequentist
confidence region agrees with our Bayesian credible region
(Sidery et al. 2014). Figure 7 shows the fraction of events
found within a given CRp as a function of p. The distribu-
tions are consistent with expectations: performing a KS test
with the predicted distribution yields p-values of 0.455 and
0.546 for LALINFERENCE and BAYESTAR respectively. Both
LALINFERENCE and BAYESTAR produce self-consistent and
unbiased sky areas in the presence of recoloured noise.

The recovered sky areas are plotted in figure 8. This shows
the cumulative distribution of areas for CR0.5, CR0.9 and
searched areas A∗ as recovered from LALINFERENCE and
BAYESTAR. We plot both the results using recoloured noise and
the results using Gaussian noise from Singer et al. (2014). All
the results are similar. LALINFERENCE produces (marginally)
more accurate sky localizations than BAYESTAR, but the rapid
code does a successful job of reconstructing the sky position
in a much shorter time (see appendix B for estimates of com-
putation time). The recovered areas are (generally) marginally
smaller for LALINFERENCE as this makes use of more infor-
mation and so is expected to perform better (a KS test returns
p-values of 0.740 when comparing CR0.9 for Gaussian noise
and 0.181 for recoloured noise).

The difference between the Gaussian and recoloured results
can be understood as a consequence of the SNR distribution
(see figure 2). The SNR is the dominant factor affecting sky lo-
calization. For example, there is no strong correlation between
the time delay between detection at the two LIGO sites and
the sky-localization accuracy. The inclusion of more low-SNR
events means that, on average, the results using recoloured
noise are worse.

The sky-localization accuracy is expected to scale as %−2.
The uncertainty in each direction on the sky scales inversely
with the SNR, hence the area scales inversely with the square
of the SNR (cf. Fairhurst 2009, 2011). This SNR scaling can
be verified by plotting recovered sky areas as a function of % as
shown in figure 9. The recovered areas do show the expected
correlation, although there is considerable scatter resulting
from the variation in intrinsic parameters.

We have plotted fiducial best-fit lines with the expected
scaling. The fitting was done simply using a naive least-squares
method, fitting a straight line to log% and logA for each sky
area A. Allowing the slope of the line to vary from −2 yields
negligible change to the fit. There is little difference between
the trends for the recoloured and Gaussian results, indicating
that the variation in the sky-localization accuracies is primarily
an effect of the different distribution of SNRs. There is a small
discrepancy between LALINFERENCE and BAYESTAR in both
cases, but the difference is not significant and is within the
uncertainty expected from the scatter of results. The general
trend for the sky-localization areas can be approximated as

log10

(
CR0.5

deg2

)
≈ − 2log10 %+ 4.46, (4a)

log10

(
CR0.9

deg2

)
≈ − 2log10 %+ 5.06. (4b)

Sky-localization accuracy (at a given SNR) does not appear to
be sensitive to the Gaussianity of the noise.

http://www.ligo.org/scientists/first2years/
http://www.ligo.org/scientists/first2years/
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Figure 6. Posterior probability density for sky location, plotted in a Mollweide projection in geographic coordinates. The star indicates the true source location.
(a) Computed by BAYESTAR. (b) Computed by LALINFERENCE. The event has simulation ID 1243 and a network SNR of % = 13.2. Versions of these plots, and
all the other events using in this study, can be found online at http://www.ligo.org/scientists/first2years/.
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Figure 7. Fraction of true locations found within a credible region as a
function of encompassed posterior probability. Results from LALINFERENCE
are indicated by the solid line, results from BAYESTAR are indicated by the
dashed line and the expected distribution is indicated by the dot–dashed
diagonal line. The 68% confidencee interval is enclosed by the shaded regions,
this accounts for sampling errors and is estimated from a beta distribution
(Cameron 2011).

From our fits (4), we can immediately see that the ratio
CR0.9/CR0.5 is about 100.6 ' 4. Considering this ratio for each
posterior, the mean value of log10(CR0.9/CR0.5) is 0.60 and
the standard deviation is 0.07. For comparison, if the pos-
terior were a 1-d Gaussian, we would expect the ratio to be
erf−1(0.9)/erf−1(0.5)' 2.4' 100.39, and if it were a 2-d Gaus-
sian, the ratio would be ln(1 − 0.9)/ ln(1 − 0.5)' 3.3' 100.52

(Fairhurst 2009, 2011). Neither of these agree well. The sky-
location posteriors can have complicated shapes, and cannot
be accurately modelled by a simple Gaussian description.

To verify that SNR distribution is the dominant cause of
difference between the Gaussian and recoloured results, we
impose a cut on the recoloured data set of %≥ 12 to match the
Gaussian set. This reduces the number of events from 333 to
236. The cumulative distribution of sky-localization areas for
results with %≥ 12 are shown in figure 10. The distributions do
overlap as expected: the Gaussian and recoloured results are in
agreement (a KS test on CR0.9 gives a p-value of 0.550 when
comparing LALINFERENCE results between noise realizations
and 0.673 for BAYESTAR).

The key numbers describing the distributions are given in

tables 1 and 2; the former gives the fraction of events with sky-
localization areas smaller than fiducial values, and the latter
gives median sky-localization areas. Our results are discussed
further in section 5.1.

4.3. Mass and distance estimation
Independent of any EM counterpart, GW astronomy is still

informative. GW observations allow for measurement of var-
ious properties of the source system. Here, we examine the
ability to measure luminosity distance and mass (principally
the chirp mass of the system).

Accurate mass and distance measurements have many phys-
ical applications. Measurement of the chirp-mass distribution
can constrain binary evolution models (Bulik & Belczynski
2003). Determining the maximum mass of a neutron star
would shed light on its equation of state (e.g., Read et al.
2009), and, potentially, on the existence of a mass gap between
neutron stars and black holes (Özel et al. 2010; Farr et al. 2011;
Kreidberg et al. 2012). Combining mass and distance mea-
surement, it may be possible to construct a new (independent)
measure of the Hubble constant (Taylor et al. 2012). GW ob-
servations shall give us unique insight into the properties of
BNS systems.

In addition to component masses and the distance to the
source, the component spins are of astrophysical importance
(e.g., Mandel & O’Shaughnessy 2010). Unfortunately, we can-
not estimate the component spins as we are using non-spinning
waveform templates. Measurement of the spins will be exam-
ined in a future study investigating PE using SpinTaylorT4
waveforms.

4.3.1. Luminosity distance

Quantifying the precision of distance estimation is simpler
than for sky localization as we are now working in a single
dimension. The equivalent of a credible region is a credible
interval. We denote the distance credible interval for a total
posterior probability p as CID

p . It is defined to exclude equal
posterior probabilities in each of the tails; it is given by

CID
p = C−1

D

(
1 + p

2

)
−C−1

D

(
1 − p

2

)
, (5)

http://www.ligo.org/scientists/first2years/
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Table 1
Fractions of events with sky-localization areas smaller than a given size from this study using recoloured noise and Singer et al.

(2014), which uses Gaussian noise. Results are quoted for the full catalogue of results with recoloured noise and imposing a SNR
cut of %≥ 12 to match the Gaussian catalogue. Figures for the 50% credible region CR0.5, the 90% credible region CR0.9 and the

searched area A∗ are included. A dash (—) is used for fractions less than 0.01.

Gaussian noise Recoloured noise Recoloured noise %≥ 12
BAYESTAR LALINFERENCE BAYESTAR LALINFERENCE BAYESTAR LALINFERENCE

CR0.5 ≤

5 deg2 — — — — — —
20 deg2 0.02 0.03 0.01 0.02 0.02 0.03

100 deg2 0.30 0.37 0.21 0.30 0.30 0.41
200 deg2 0.74 0.80 0.58 0.64 0.76 0.80
500 deg2 1.00 1.00 1.00 0.99 1.00 1.00

1000 deg2 1.00 1.00 1.00 1.00 1.00 1.00

CR0.9 ≤

5 deg2 — — — — — —
20 deg2 — — — — — —

100 deg2 0.03 0.04 0.02 0.03 0.03 0.04
200 deg2 0.10 0.13 0.06 0.08 0.09 0.12
500 deg2 0.44 0.48 0.31 0.38 0.44 0.52

1000 deg2 0.98 0.93 0.78 0.80 0.96 0.94

A∗ ≤

5 deg2 0.03 0.04 0.03 0.04 0.03 0.06
20 deg2 0.14 0.19 0.12 0.14 0.15 0.16

100 deg2 0.45 0.54 0.40 0.45 0.47 0.52
200 deg2 0.64 0.70 0.60 0.60 0.66 0.68
500 deg2 0.87 0.89 0.82 0.83 0.87 0.89

1000 deg2 0.97 0.99 0.96 0.95 0.98 0.97

Table 2
Median sky-localization areas from this study using recoloured noise, and Singer et al. (2014), which uses Gaussian noise.
Results are quoted for the full catalogue of results with recoloured noise and imposing a SNR cut of %≥ 12 to match the

Gaussian catalogue. Figures for the 50% credible region CR0.5, the 90% credible region CR0.9 and the searched area A∗ are
included.

Gaussian noise Recoloured noise Recoloured noise %≥ 12
BAYESTAR LALINFERENCE BAYESTAR LALINFERENCE BAYESTAR LALINFERENCE

Median
CR0.5 138 deg2 124 deg2 175 deg2 154 deg2 145 deg2 118 deg2

CR0.9 545 deg2 529 deg2 692 deg2 632 deg2 524 deg2 481 deg2

A∗ 123 deg2 88 deg2 145 deg2 132 deg2 118 deg2 88 deg2

where C−1
D (p) is the inverse of the cumulative distribution func-

tion

CD(D) =
∫ D

0
dD′PD(D′) (6)

for distance posterior PD(D). The same symmetric definition
for the credible interval was used by Aasi et al. (2013a). A
smaller CID

p for a given p indicates more precise distance
estimation.

The self-consistency of our distance estimates can be veri-
fied by calculating the fraction of true values that fall within
the credible interval at a given p. This is shown in figure 11
for results from both the Gaussian and recoloured noise results.
Both distributions are consistent with expectations (perform-
ing a KS test with the predicted distribution yields p-values of
0.168 and 0.057 for the recoloured and Gaussian noise respec-
tively). LALINFERENCE does return self-consistent distance
estimates.

The cumulative distributions of credible intervals are plot-
ted in figure 12. We divide the credible interval by the true
(injected) distance D?; this gives an approximate analogue
of twice the fractional uncertainty. The quantity CID

p /D? ap-
pears insensitive to the detection cut-off (a KS test between
CID

0.9/D? for the recoloured and Gaussian results gives a p-
value of 0.077). This appears in contrast to the case for sky

areas, but the differing SNR distributions are accounted for by
scaling with respect to the distance (which is inversely propor-
tional to the SNR). The estimation of the distance, like that for
sky areas, does not depend upon the character of the noise.

Distance estimation is imprecise: the posterior widths are
frequently comparable the the magnitude of the distance itself.
This is a consequence of a degeneracy between the distance
and the inclination (Cutler & Flanagan 1994; Aasi et al. 2013a).
The key numbers summarising distance estimation are given
in tables 3 and 4; the former gives the fraction of events with
CID

p /D? smaller than fiducial values, and the latter gives me-
dian values.

4.3.2. Chirp mass

The chirp mass should be precisely measured as it deter-
mines the GW phase evolution. We again use the credible
interval to quantify measurement precision; the chirp-mass
credible interval CIMc

p is defined equivalently to its distance
counterpart in (5).

The fraction of true chirp masses that fall within CIMc
p at a

given p is plotted in figure 13. Neither the results calculated
using Gaussian noise nor those using recoloured noise fit our
expectations: the posteriors are not well calibrated. However,
the two sets of results are entirely consistent with each other (a
KS test between the two gives a p-value of 0.524), indicating
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Figure 8. Cumulative fractions of events with sky-localization areas smaller
than the abscissa value. (a) Sky area of 50% credible region CR0.5, the
(smallest) area enclosing 50% of the total posterior probability. (b) Sky area of
CR0.9. (c) Searched area A∗, the area of the smallest credible region containing
the true position. LALINFERENCE and BAYESTAR results are denoted by
thicker blue and thinner red–orange lines respectively. The results of this study
are indicated by a solid line, while the results of Singer et al. (2014), which
uses Gaussian noise, are indicated by a dashed line. The 68% confidence
intervals are denoted by the shaded areas.

Table 3
Fractions of events with fractional distance estimate
uncertainties smaller than a given size. Results using

recoloured noise and Gaussian noise are included (Singer
et al. 2014). Figures for the 50% credible interval CID

0.5 and
the 90% credible interval CID

0.9 are included, both are
scaled with respect to the true distance D?. A dash (—) is

used for fractions less than 0.01.

Gaussian noise Recoloured noise

CID
0.5

D?
≤

0.25 0.04 0.03
0.50 0.77 0.74
0.75 0.95 0.93
1.00 0.98 0.98
2.00 1.00 1.00

CID
0.9

D?
≤

0.25 — —
0.50 — —
0.75 0.40 0.35
1.00 0.70 0.66
2.00 0.96 0.97

Table 4
Median distance credible intervals (divided by the true

distance) using recoloured noise and Gaussian noise (Singer
et al. 2014). Figures for the 50% credible interval CID

0.5 and the
90% credible interval CID

0.9 are included.

Gaussian noise Recoloured noise

Median CID
0.5/D? 0.36 0.38

CID
0.9/D? 0.82 0.85

that the PE is not affected by the noise. There appears to be
a systematic error in our posterior distributions of the chirp
mass.

The discrepancies between our posterior estimates for the
chirp masses and their true values are a consequence of our
use of non-spinning TaylorF2 waveform templates. This has
two effects. First, by using a non-spinning waveform, we do
not explore the degeneracy between mass and spin (Cutler &
Flanagan 1994; van der Sluys et al. 2008b; Baird et al. 2013).
This results in an artificially narrow marginalized posterior
for mass parameters such as the chirp mass. In effect, we are
pinning the spin to be zero, which is information we should
not have a priori. Second, we have used a template that does
not exactly match the injected waveform (SpinTaylorT4). The
small difference in approximants results in a mismatch in
estimated parameters (Buonanno et al. 2009; Aasi et al. 2013a).
Since the posterior on the chirp mass is narrow, because it is
intrinsically well-measured and because we have not included
degeneracy with spin, even a small difference in templates is
sufficient to offset the posterior from the true chirp mass by a
statistically significant amount.

To examine the offset between the estimated and true chirp
masses, we plot in figure 14 the difference between the poste-
rior mean M̄c and the true valueM? divided by the standard
deviation of the posterior σMc . Using the median in place
of the mean, or CIMc

0.68/2 in place of σMc , gives only a small
quantitative difference. Over this narrow mass range, the off-
set is not a strong function of the chirp mass. The offset is a
combination of both error introduced by the presence of noise
and theoretical error from the mismatch between the injected
waveform and template waveforms (Cutler & Vallisneri 2007).
If only the former were significant, we would expect the mean
offset to be zero, and the typical scatter of offsets to be of
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Figure 9. Sky-localization areas as a function of SNR %. (a) Sky area of 50% credible region CR0.5. (b) Sky area of CR0.9. Individual results are indicated
by points. We include simple best-fit lines assuming that the area A ∝ %−2. LALINFERENCE and BAYESTAR results are denoted by thicker blue and thinner
red–orange lines respectively. The results of this study are indicated by a solid line, while the results of Singer et al. (2014), which uses Gaussian noise, are
indicated by a dashed line.

order of the posterior’s standard deviation. Neither of these is
the case. The average scaled offset (M̄c −M?)/σMc across
the recoloured (Gaussian) data set is −1.3±0.1 (−0.9±0.1).
This shows that there is a systematic error. However, it is
not as simple as just systematically underestimating the chirp
mass; there is a large scatter in the offsets, the standard devi-
ation of the scaled offset for the recoloured (Gaussian) data
set is 2.07± 0.08 (2.09± 0.09). This is consistent with our
expectation that the mass–spin degeneracy should broaden the
posterior; these results imply that the posterior should be a
factor of ∼ 2 wider (cf. Poisson & Will 1995).

While the theoretical error is important in determining the
accuracy to which we can infer the chirp mass, it does not
completely dominate the noise error. To illustrate the scale of
the errors, we plot distribution of the 50% and 90% credible in-
tervals in figures 15(a) and 15(b), and the absolute magnitudes
of the offsets in figure 15(c). For a well calibrated posterior, we
would expect the offset to be smaller than CIMc

0.9 /2 (CIMc
0.5 /2)

in approximately 90% (50%) of events. Figure 13 shows that
this is not the case, that we do have systematic error. Figure
14 confirms this and shows that the theoretical error is of a
comparable size to the noise error. In figure 15, we see that
the presence of theoretical error does not radically affect the
distribution of offsets. The median value of the offsets are
(2.6× 10−4)M� and (2.4× 10−4)M�, and the median values
of CIMc

0.5 /2 are (1.2× 10−4)M� and (1.3× 10−4)M� for the
recoloured and Gaussian data sets respectively; the theoreti-
cal error approximately doubles the total uncertainty on the
chirp mass. The key numbers summarising the distributions
are given in tables 5 and 6, which give the fraction of events
with uncertainties smaller than fiducial values and the median
uncertainties respectively.

Furthermore, figure 15 shows that the (in)ability to measure
the chirp mass is not significantly influenced by the character of
the noise or the detection threshold used (a KS test comparing
the CIMc

0.9 and |M̄c −M?| distributions between the Gaussian
and recoloured data sets gives p-values of 0.805 and 0.507
respectively). The latter is a consequence of both thresholds
recovering equivalent chirp-mass distributions (figure 4).

It should be possible to incorporate knowledge of theoretical

Table 5
Fractions of events with chirp-mass estimate errors smaller than a given
value. Results using recoloured noise and Gaussian noise are included
(Singer et al. 2014). Included are figures for the 50% credible interval

CIMc
0.5 and the 90% credible interval CIMc

0.9 , which only include statistical
error from the noise, and for the posterior mean offset relative to the true
chirp mass |M̄c −M?|, which includes both noise error and theoretical

error. A dash (—) is used for fractions less than 0.01.

Gaussian noise Recoloured noise

CIMc
0.5 ≤

(5×10−5)M� — —
(1×10−4)M� 0.05 0.03
(2×10−4)M� 0.34 0.33
(5×10−4)M� 0.89 0.88
(1×10−3)M� 1.00 0.99
(2×10−3)M� 1.00 1.00

CIMc
0.9 ≤

(5×10−5)M� — —
(1×10−4)M� — —
(2×10−4)M� 0.01 0.02
(5×10−4)M� 0.29 0.29
(1×10−3)M� 0.77 0.79
(2×10−3)M� 1.00 0.97

∣∣M̄c −M?

∣∣≤
(5×10−5)M� 0.09 0.11
(1×10−4)M� 0.20 0.21
(2×10−4)M� 0.42 0.41
(5×10−4)M� 0.83 0.79
(1×10−3)M� 0.98 0.96
(2×10−3)M� 1.00 1.00

waveform error into PE by marginalizing out the uncertainty.
This can be done using parametric models for the uncertainty
if a specific form of the waveform error is suspected, or non-
parametrically if we wish to be agnostic. The effect of folding
in this additional uncertainty is to broaden the posteriors and
possibly shift their means; doing so should make posterior
estimates consistent with the true values.

While we cannot correctly reconstruct the posterior distribu-
tion for the chirp mass, the error in the estimate is still small.
We can measure the chirp mass accurately, even though we are
affected by systematic error.

4.3.3. Component masses



PE WITH REALISTIC NOISE DURING ALIGO 11

Area of 50% credible region/deg2

C
u
m
u
la
ti
ve

fr
ac
ti
on

of
ev
en
ts

LALInference recoloured

LALInference Gaussian

bayestar recoloured

bayestar Gaussian

100 101 102 103 104
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(a)

(b)

Searched area/deg2

C
u
m
u
la
ti
ve

fr
ac
ti
on

of
ev
en
ts

LALInference recoloured

LALInference Gaussian

bayestar recoloured

bayestar Gaussian

100 101 102 103 104
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(c)

Figure 10. Cumulative fractions of events with sky-localization areas smaller
than the abscissa value as in figure 8 but imposing an SNR cut of %R ≥
12. (a) Sky area of CR0.5. (b) Sky area of CR0.9. (c) Searched area A∗.
LALINFERENCE and BAYESTAR results are denoted by thicker blue and
thinner red–orange lines respectively. The results of this study are indicated by
a solid line, while the results of Singer et al. (2014), which uses Gaussian noise,
are indicated by a dashed line. The 68% confidence intervals are denoted by
the shaded areas.
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Figure 11. Fraction of true luminosity distances found within a credible
interval as a function of encompassed posterior probability. Results using
recoloured noise are indicated by a solid line, while the results using Gaussian
noise (Singer et al. 2014) are indicated by a dashed line. The expected
distribution is indicated by the dot–dashed diagonal line. The shaded regions
enclose the 68% confidence intervals accounting for sampling errors.

Table 6
Median chirp mass credible intervals and posterior estimate offset

using recoloured noise and Gaussian noise (Singer et al. 2014).
Included are figures for the 50% credible interval CIMc

0.5 and the
90% credible interval CIMc

0.9 , and the posterior mean offset relative
to the true value |M̄c −M?|.

Gaussian noise Recoloured noise

Median
CIMc

0.5 (2.6×10−4)M� (2.5×10−4)M�
CIMc

0.9 (6.4×10−4)M� (6.4×10−4)M�∣∣M̄c −M?

∣∣ (2.4×10−4)M� (2.6×10−4)M�

The chirp mass is a combination of the component masses;
in some cases it can be used to infer whether the source is
a BNS or a binary black-hole system (Hannam et al. 2013;
Vitale & Del Pozzo 2014), but the component masses are of
greater interest. The mass–spin degeneracy affects our ability
to construct accurate estimates for the individual masses. Since
we have already seen a systematic error in the chirp mass, we
expect an analogous (larger) phenomenon here.

We are again working in two dimensions, so we use credible
regions to quantify PE precision. The mass-space credible
region CRm1−m2

p is defined analogously to its sky-area counter-
part in (2); it is easier to compute as we do not have to contend
with the spherical geometry of the sky or with as intricate pos-
terior distributions. We plot in figure 16 the fraction of injected
masses that fall within CRm1−m2

p at a given p. As for the chirp
mass, the posterior is not well calibrated, approximately 40%
(38% for results with recoloured noise and 42% for Gaussian)
of the true component masses lie altogether outside the range
of the estimated posterior, but the two sets of results are con-
sistent with each other (performing a KS test gives a p-value
of 0.969). We cannot accurately reconstruct the component
masses using our non-spinning waveforms.

To give an indication of the scale of the uncertainty in m1–m2
space, we plot the 90% credible region in figure 17. Since our
estimates for the component masses are inaccurate, with many
true values lying outside the posterior, CRm1−m2

p is a lower
bound on the typical scale for measurement accuracy. This
does not reflect how well we can actually measure the compo-
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Figure 12. Cumulative fractions of events with luminosity-distance credible intervals (divided by the true distance) smaller than the abscissa value. (a) Scaled 50%
credible interval CID

0.5/D?. (b) Scaled 90% interval CID
0.9/D?. Results using recoloured noise are indicated by a solid line and the results using Gaussian noise

(Singer et al. 2014) are indicated by a dashed line. The 68% confidence intervals are denoted by the shaded areas.
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Figure 13. Fraction of true source chirp masses found within a credible
interval as a function of encompassed posterior probability. Results using
recoloured noise are indicated by a solid line, while the results using Gaussian
noise (Singer et al. 2014) are indicated by a dashed line. The expected
distribution is indicated by the dot–dashed diagonal line. The shaded regions
enclose the 68% confidence intervals accounting for sampling errors.

nent masses, to produce accurate estimates, we must include
the mass–spin degeneracy which broadens the posterior.

It is apparent that a statement regarding measurement of
component masses must wait until an analysis is done using
waveforms that include spin. We will return this question in a
future publication.

5. DISCUSSION AND CONCLUSIONS
5.1. Observing scenarios

Having determined the sky-localization accuracy expected
for O1, we now use our results to compare with current pre-
dictions for observing scenarios in the advanced-detector era.
In section 5.1.1 we consider the two-detector network of O1.
In section 5.1.2 we extend our discussion to consider predic-
tions for sky-localization in subsequent observing runs using a
three-detector network.

5.1.1. Two-detector sky-localization accuracy

Prospects for sky localization in the advanced-detector era
are specified by Aasi et al. (2013b). This states that any events

Figure 14. Offset between the posterior mean estimate for the chirp mass
M̄c and the true (injected) valueM? divided by the standard deviation of the
posterior distribution σMc . The round (green) points are for the results using
Gaussian noise (Singer et al. 2014) and the star-shaped (red) points are for
results using recoloured noise.

detected in 2015 would not be well localized. This has been
shown to not be the case (e.g., Nissanke et al. 2011; Kasliwal
& Nissanke 2014; Singer et al. 2014). We see that while
only a small fraction of events have well-localized sources,
this fraction is non-zero. The 90% credible region is almost
always smaller than 103 deg2. The 2015 observing scenario
of Aasi et al. (2013b) does not give any figures for potential
sky-localization accuracy, but we can now be specific using
the results of this work.

The sky-localization figures currently included in Aasi et al.
(2013b) are calculated using TT (Fairhurst 2009, 2011). This
is a convenient means of predicting sky-localization accuracy;
it is not a method used to reconstruct the sky-position posterior
of detected signals. For a two-detector network, triangulation
predicts an unbroken annulus on the sky. The area of this ring
linearly scales with the uncertainty on the timing measurement,
which is inversely proportional to the SNR. Our results show
that, when using a coherent Bayesian approach, the recovered
sky area is not (always) a ring, see figure 6, and the area scales
inversely with the square of the SNR (Raymond et al. 2009).
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Figure 15. Cumulative fractions of events with (a) 50% chirp-mass credible
interval, (b) 90% credible interval, and (c) offsets between the posterior mean
and true chirp mass smaller than the abscissa value. Results using recoloured
noise are indicated by a solid line and the results using Gaussian noise (Singer
et al. 2014) are indicated by a dashed line. The 68% confidence intervals are
denoted by the shaded areas.
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Figure 16. Fraction of true source component masses (m1, m2) found within
a credible region as a function of encompassed posterior probability. Results
using recoloured noise are indicated by a solid line, while the results using
Gaussian noise (Singer et al. 2014) are indicated by a dashed line. The
expected distribution is indicated by the dot–dashed diagonal line. The shaded
regions enclose the 68% confidence intervals accounting for sampling errors.
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Figure 17. Cumulative fractions of events with m1–m2 90% credible regions
smaller than the abscissa value. Results using recoloured noise are indicated
by a solid line and the results using Gaussian noise (Singer et al. 2014) are
indicated by a dashed line. The 68% confidence intervals are denoted by
the shaded areas. These results show the typical posterior width using non-
spinning waveforms, the failure to include the mass–spin degeneracy means
that these posteriors are too narrow.

Hence, TT is a poor fit in this case.
In figure 18 we plot the ratio of the predicted credible region

calculated using TT, to the actual credible region calculated
using LALINFERENCE PE. We include predictions from both
standard TT and also TT including phase coherence (Grover
et al. 2014). The former method estimates timing accuracy
(and hence the width of the sky annulus) as a function of
the SNR and detector bandwidth.20 The latter method intro-
duces the requirement of phase consistency between detectors,
which can significantly aid source localization. These effects
are modelled via a correction factor, whose value depends on
how marginalization over polarization is taken into account.
Here, we use the larger of the two correction factors proposed
in Grover et al. (2014), their equation (16), although the degen-

20 In calculating these values we have corrected typos in both equation (28)
of Fairhurst (2009), where the prefactor should be

√
2erf−1(0.9)≈ 1.65 rather

than 3.3, and equation (15) of Fairhurst (2011), which has an unnecessary
factor of D.
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Figure 18. Ratio of the area of credible regions calculated using TT and PE as a function of the SNR. (a) Ratio of 50% credible regions CR0.5. (b) Ratio of CR0.9.
TT results are calculated using just time of arrivals (Fairhurst 2009, 2011), indicated by the star-shaped (blue) points, and by also including phase coherence
(Grover et al. 2014), indicated by the round (purple) points. PE results are calculated from the posteriors returned by LALINFERENCE.

eracy between phase and polarization means that the correction
factor is probably too large for the two-detector network. The
time and phase method does better, but neither technique does
a good job at matching the true localization: both are too pes-
simistic. Agreement worsens at higher SNR as a consequence
of the different SNR scalings. We cannot naively use TT to
predict sky-localization accuracy for a two-detector network.

We have found that sky areas recovered during O1 are likely
to be hundreds of square degrees. Covering such a large area to
sufficient depth to detect the most plausible EM counterparts
(r & 22–26 mag; Metzger & Berger 2012; Barnes & Kasen
2013; Metzger et al. 2015) is challenging for current EM obser-
vatories (Kasliwal & Nissanke 2014); furthermore, posterior
distributions for the sky location are commonly multimodal or
feature long, narrow arcs making them awkward to cover. It
will be necessary to carefully consider how to most efficiently
point telescopes to maximise the probability of observing a
counterpart; using galaxy catalogues could be one means of
increasing this chance (Nuttall & Sutton 2010; Nissanke et al.
2013; Hanna et al. 2014; Bartos et al. 2015; Fan et al. 2014).

5.1.2. Three-detector sky-localization accuracy

For 2016 onwards, we expect that AdV would also be in
operation. The addition of a third detector should significantly
improve sky-localization accuracy (Singer et al. 2014).

Aasi et al. (2013b) give figures for sky-localization accu-
racies in the three-detector era. In 2016, Aasi et al. (2013b)
predicts that 2% (5–12%) of BNS detections shall be localized
within 5 deg2 (20 deg2) at 90% confidence. These values are
calculated from TT. Ideally, we would like to compare these to
results using Bayesian PE using recoloured noise, but perform-
ing three-detector PE runs for later observing periods is outside
the range of this study. However, we have demonstrated that
the properties of the noise do not impact sky-localization ac-
curacies, provided that the chosen detection threshold yields
similar SNR distributions in all cases. Consequently, we can
use the three-detector, Gaussian-noise LALINFERENCE re-
sults of Singer et al. (2014) as a reference. For comparison,
they find that 2% (14%) of events have CR0.9 smaller than
5 deg2 (20 deg2). PE with LALINFERENCE provides more
optimistic sky-localization accuracies than TT.

In figure 19 we compare the three-detector results of Singer

et al. (2014) to the equivalent results calculated using TT.
These results are for 2016, assuming the mid noise curve
of Barsotti & Fritschel (2012) for the aLIGO detectors, and
the geometric mean of the high and low bounds of the early
curve of Aasi et al. (2013b) for the Virgo interferometer. Both
triangulation and PE produce sky areas that scale with %−2, such
that their ratio shows no significant trend with SNR, although
the scatter seems to decrease as SNR increases.

Comparing the entire population of points, we can calculate
average values, which are given in table 7. We consider the
logarithm of the ratio, which should be log10(1) = 0 for perfect
agreement. The median log10(CRTT

0.5/CRPE
0.5) using only time

of arrival is 0.61, in complete agreement with the findings of
Grover et al. (2014); using time and phase, the median value is
0.13. The TT and PE results have different ratios CR0.9/CR0.5.
The mean value of log10(CRPE

0.9/CRPE
0.5) is approximately 0.64

and the standard deviation is 0.13; again (see section 4.2), this
does not fit well with a Gaussian model. The 90% credible
regions for triangulation and PE are in better agreement with
each other, with the time-and-phase triangulation average areas
consistent with those from LALINFERENCE. The time-and-
phase method produces a reasonable estimate when averaged
over the entire population. However, for individual events
there is large scatter because TT models are purely predictive
and do not take into account the actual data realization.

Despite the good average agreement, there is a large tail
of events at low SNRs where credible regions are too small,
and the results suggest that at high SNRs the credible regions
may be too large; this may introduce errors when considering
the sub-populations of the best localized or worst localized
events (or if the distribution of events is significantly different
from that considered here). Given all these findings, we can be
confident that the TT results of Aasi et al. (2013b) are overly
pessimistic.

There remains one further caveat before we can state that
the sky-localization accuracies of Aasi et al. (2013b) should be
revised to give better results. We have seen that using a realistic
FAR cut allows us to detect signals with % < 12. These low-
SNR results shift the distribution of sky-localization accuracies,
such that the performance appears worse. Thus, while we can
be confident that the events currently included should have
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Figure 19. Ratio of the area of credible regions calculated as a function of the SNR as in figure 18, but for a three-detector network as expected in 2016. (a) Ratio
of CR0.5. (b) Ratio of CR0.9. TT results are calculated using just time of arrivals (Fairhurst 2009, 2011), indicated by the star-shaped (blue) points, and by also
including phase coherence (Grover et al. 2014), indicated by the round (purple) points. PE results with Gaussian noise are calculated from the posteriors returned
by LALINFERENCE (Singer et al. 2014).

Table 7
Average values of the logarithm of the ratio of credible regions calculated
using TT to those calculated from PE log10(CRTT

p /CRFull
p ). TT results are

calculated using just time of arrivals (Fairhurst 2009, 2011) and by also
including phase coherence (Grover et al. 2014). PE results with Gaussian

noise are calculated from the posteriors returned by LALINFERENCE
(Singer et al. 2014).

Triangulation method p Mean Median Standard deviation

Time only 0.5 0.53 0.61 0.39
0.9 0.42 0.55 0.49

Time and phase 0.5 0.05 0.13 0.39
0.9 −0.07 0.07 0.49

a better accuracy than assumed for Aasi et al. (2013b), the
total population of detectable events is potentially larger than
previously estimated, and may include some low-SNR events
with poorer localization.

5.2. Summary
We provide realistic prospects for sky localization and EM

follow-up of CBC sources in the O1 era by simulating a search
for BNS sources with a two-detector aLIGO network at antici-
pated 2015 sensitivity. Our analysis is designed to be as similar
as possible to recent work investigating sky-localization capa-
bility in the first two years of the advanced-detector era (Singer
et al. 2014). That study assumed Gaussian noise whereas our
analysis incorporates more realistic noise, using real data from
the S6 observing period recoloured to the anticipated 2015
noise spectrum.

We use the same list of simulated BNS sources as previously
used in Singer et al. (2014). The simulated events are passed
through the GSTLAL_INSPIRAL data-analysis pipeline which
will be used online in O1. Detection triggers from this search
with a FAR of ≤ 10−2 yr−1 are then followed up with sky-
localization and PE codes.

The pipeline should not significantly distort the population
of signals detected compared with the astrophysical population.
There appears to be no selection based upon BNS spin. There
is a selection effect determined by the chirp mass (systems
with smaller chirp masses are harder to detect), but this trans-

lates to only a small difference for a small number (. 102) of
detections.

Comparison of sky-localization areas from BAYESTAR and
LALINFERENCE demonstrates that while the former only
uses a selection of the information available and employs a
number of approximations, it does successfully reconstruct sky
position. Furthermore, BAYESTAR does this with sufficiently
low latency to be of use for rapid EM follow-up.

Rapid sky-localization with BAYESTAR takes on average
900 s of CPU time per event (appendix B). If it is parallelized
in a 32-way configuration (the baseline for online analysis),
this correspond to a wall time of 30 s. None of our runs would
take longer than 60 s to complete.

PE using LALINFERENCE_NEST with (non-spinning) Tay-
lorF2 waveforms requires a total CPU time of ∼ 2×106 s per
event (appendix B). Five CPUs were used for each LALINFER-
ENCE_NEST run, hence the wall time, as a first approximation,
can be estimated as∼ 100 hr. These PE results can be produced
within a few days, although with more expensive waveforms,
the time taken is longer. Ongoing technical improvements
should reduce the computational cost in the near future (Veitch
et al. 2015).

Considering sky-localization, the median area of CR0.9
(CR0.5) as estimated by LALINFERENCE is 632 deg2

(154 deg2), and the median searched area is 132 deg2. LAL-
INFERENCE finds that 2% of events have CR0.5 smaller than
20 deg2; fewer than 1% of events have CR0.5 smaller than
5 deg2 or CR0.9 smaller than 20 deg2, but 14% of events have
searched areas smaller than 20 deg2 and 4% have searched
areas smaller than 5 deg2. These are worse than predicted us-
ing Gaussian noise because of the inclusion of more low-SNR
events, but if these additional events are excluded, the results
calculated using both types of noise are in agreement. The
non-stationarity and non-Gaussianity of the recoloured noise
does not noticeably affect sky-localization accuracy, and sky
areas are consistent if the same SNR threshold is applied to
the recoloured and Gaussian data sets.

The 2015 observing scenario of Aasi et al. (2013b) currently
states that any events detected would not be well localized.
This is not the case, although recovered areas are still large.
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While Aasi et al. (2013b) does not have sky-localization
figures for 2015, it does have them for later years. These are
calculated using a TT method (Fairhurst 2009, 2011). The
Gaussian results of Singer et al. (2014) show that we can
achieve better sky localization than expected from TT alone;
this improvement can principally be explained by the incorpo-
ration of phase consistency (Grover et al. 2014). Hence, the
figures in (Aasi et al. 2013b) may be pessimistic. However,
from this study we also know that results using Gaussian noise
are liable to be optimistic because they exclude events by using
of a detection threshold of %≥ 12; in practise, when using a
FAR threshold, there is a tail of lower SNR events that skew
the distribution. This must be accounted for when quoting the
fraction of events located to within a given area. Therefore,
updating the numbers in the observing scenarios for later years
is not straightforward.

The LALINFERENCE runs also return posteriors for other
parameters. We looked at the source luminosity distance, the
chirp mass and the component masses. The distance is not well
measured; the median CID

0.9/D? (CID
0.5/D?) is 0.85 (0.38). As

a consequence of our use of non-spinning waveform templates
that do not exactly match the injected waveforms, the chirp-
mass estimates are subject to theoretical error of a size roughly
equal to the uncertainty introduced by the noise. This means
our posteriors are not well calibrated: they are both (on aver-
age) offset from the true position and too narrow (by a factor
of∼ 1/2). Using spinning waveforms, such that the mass–spin
degeneracy can be explored, will broaden the posteriors and
resolve this problem, but we will always face a potential sys-
tematic bias unless we exactly know the true waveforms of
Nature. Despite the systematic effects, the posterior mean of
the chirp-mass distribution is within 10−3M� of the true chirp
mass in 96% of events, and the median absolute difference
between the two is (2.6×10−4)M�. A larger difference could
occur if there is a larger discrepancy between the waveform
template and the true waveform, but we expect it to be of a sim-
ilar order of magnitude. While we can still accurately measure
the chirp mass using non-spinning waveforms, the same does
not apply for component masses. Estimates for these must be
performed using spinning waveforms; we shall examine this
in a future study.

Aggregate PE accuracy is the same for the population of
signals with Gaussian noise and the population with recoloured
noise. The inclusion of non-stationary and non-Gaussian noise
features does not degrade our average PE ability at a given
SNR. The recoloured S6 noise is used as a surrogate for real
aLIGO noise; while it is more realistic than pure Gaussian
noise, it does not necessary reflect the true form of the noise
that will be recorded in O1. However, since we do not observe
any difference in PE performance using recoloured noise, we
can be confident that the non-Gaussianity of real noise should
not significantly affect our PE ability (unless the noise charac-
teristics are qualitatively different than anticipated). We expect
that the non-stationary and non-Gaussian noise of the advanced
detectors will not be a detriment to PE for BNSs.
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APPENDIX

A. DETECTION AND COMPONENT MASSES

In section 4.1.2, we examined selection effects of the de-
tection pipeline. In particular, we looked at the detected dis-
tribution of chirp masses as this sets the GW amplitude. The
magnitude of the selection effect depends on the details of the
chirp-mass distribution, but can be estimated using a simple
model. For low-mass signals whose inspiral spans the sensi-
tive band of the detector, the amplitude of the waveform is
proportional toM5/6

c (Sathyaprakash & Schutz 2009). The
sensitive volume is proportional to the cube of this, orM5/2

c .
Suppose that half of the injections are made at a chirp mass
of M̄c − δMc and the other half at a chirp mass value of
M̄c + δMc, with δMc�M̄c. Then the expected fraction of
higher-mass systems among all detected systems is

Fhigh =

(
M̄c + δMc

)5/2(
M̄c + δMc

)5/2
+
(
M̄c − δMc

)5/2

'1
2

+
5
4
δMc

M̄c
. (A1)

If N detections are made in total and the selection effects
played no role, the expected number of detections from the
higher-mass set would be N/2 with a standard deviation of√

N/2. However, in our model, there is a predicted excess
of 5NδMc/(4M̄c) high-mass detections because of selection
effects. Consequently, we expect to have x-σ confidence in
observing a selection effect on chirp mass, where

x =
5
√

N
2

δMc

M̄c
. (A2)

We can estimate M̄c from the mean of the chirp-mass distribu-
tion, and δMc from the standard deviation; for our injections
set, δMc/M̄c ≈ 0.06. For the Gaussian data set N = 250, and
so we expect to observe selection effects at only the∼ 2-σ con-
fidence level; the actual measurements are roughly consistent
with this. For such a narrow chirp-mass distribution, & 103

detections are needed to confidently observe the selection ef-
fects.

http://github.com/farr/plotutils
http://github.com/farr/plotutils
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Figure 20. Cumulative fractions of detected events with component masses
smaller than the abscissa value. The mass distribution for the first neutron star
m1 is denoted by the solid line, and the distribution for the second neutron
star m2 is denoted by the dashed line. Results with recoloured noise are
denoted by the thicker red–purple lines, and results from the subset of 250
events analysed with LALINFERENCE with Gaussian noise are denoted by the
thinner blue–green lines (Singer et al. 2014). The 68% confidence intervals
are denoted by the shaded areas. The expected distribution for component
masses drawn uniformly from mmin = 1.2M� to mmax = 1.6M� is indicated
by the black dot–dashed line.

While the chirp mass is of prime importance to GW as-
tronomers (it is their most precisely determined mass parame-
ter), other combinations of mass are of interest in other con-
texts. Parameters which are correlated with the chirp mass, are
also subject to selection effects. However, their significance is
proportional to the level of correlation of the parameters with
chirp mass; given that selection effects on chirp mass are small,
we do not expect statistically significant effects for other mass
parameters. Here, we present the distributions of the individual
component masses, the asymmetric mass ratio and the total
mass.

The distribution of recovered (injected) component masses
is shown in figure 20. The detected events show a slight over-
representation of higher-mass objects, which is the effect of
selecting systems with larger chirp masses. The deviation
from the injection distribution is small (a KS test with the
predicted distribution gives p-values of 0.213 and 0.182 for
Gaussian noise, and 0.276 and 0.022 for the recoloured noise),
but noticeably more significant than for the spins.

The asymmetric mass ratio is

q =
min{m1, m2}
max{m1, m2}

. (A3)

For uniformly distributed m1 and m2 between mmin and mmax,
the probability density function for q is

Pq(q) =


1

(mmax − mmin)2

(
m2

max −
m2

min

q2

)
mmin

mmax
≤ q≤ 1

0 Otherwise
.

(A4)

Integrating this gives a cumulative distribution function

Cq(q) =


0 q≤ mmin

mmax
1

(mmax − mmin)2

(
m2

maxq − 2mminmmax +
m2

min

q

)
mmin

mmax
≤ q≤ 1

1 1≤ q

. (A5)

Figure 21 shows the recovered distribution of mass ratios as well as the injection distribution given by Cq(q). There is a small
difference between the injection and recovered distributions (a KS test with the injection distribution returns p-values of 0.536 and
0.050 for the Gaussian and recoloured noise respectively).

The probability density function for the total system mass, M = m1 + m2, is

PM(M) =


1

(mmax − mmin)2 (M − 2mmin) 2mmin ≤M ≤ mmin + mmax

1
(mmax − mmin)2 (2mmax − M) mmin + mmax ≤M ≤ 2mmax

0 Otherwise

. (A6)

Consequently, its cumulative distribution function is

CM(M) =



0 M ≤ 2mmin

1
(mmax − mmin)2

(
M2

2
− 2mminM + 2m2

min

)
2mmin ≤M ≤ mmin + mmax

1
(mmax − mmin)2

(
2mmaxM −

M2

2
+ m2

min − 2mminmmax − m2
max

)
mmin + mmax ≤M ≤ 2mmax

1 2mmax ≤M

. (A7)

Figure 22 shows the recovered distribution of total masses as well as the injection distribution given by CM(M). The



18 BERRY ET AL.

Mass ratio q

C
u
m
u
la
ti
ve

fr
ac
ti
on

of
ev
en
ts

Recoloured

Gaussian

0.70 0.75 0.80 0.85 0.90 0.95 1.00
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 21. Cumulative fractions of detected events with asymmetric mass
ratios smaller than the abscissa value. Results using recoloured noise are
denoted by the solid red line, and results from the subset of 250 events with
Gaussian noise analysed with LALINFERENCE are denoted by the dashed
green line (Singer et al. 2014). The 68% confidence intervals are denoted by
the shaded areas. The injection distribution Cq(q) is indicated by the black
dot–dashed line.
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Figure 22. Cumulative fractions of detected events with total masses smaller
than the abscissa value. Results using recoloured noise are denoted by the
solid red line, and results from the subset of 250 events with Gaussian noise
analysed with LALINFERENCE are denoted by the dashed green line (Singer
et al. 2014). The 68% confidence intervals are denoted by the shaded areas.
The injection distribution CM(M) is indicated by the black dot–dashed line.

distributions are similar to those seen for the chirp mass
in figure 4. This is not surprising, as there is a clear link
between the two quantities. We are considering a narrow
mass range; individual component masses can be described
as m1,2 = mmin(1 +ε1,2), where ε1,2 ≤ (mmax − mmin)/mmin� 1.
The total mass is mmin(2 + ε1 + ε2); to first order in ε1,2, the
chirp mass can be described as 2−6/5mmin(2 +ε1 +ε2). Hence,
the total mass is approximately proportional to the chirp mass
across the range of interest. We preferentially select signals
with larger total masses as these produce louder signals, al-
though the difference between the injection and recovered
distributions is not too large (a KS test with the injection dis-
tribution yields p-values of 0.338 and 0.050 for the Gaussian
and recoloured noise respectively).

All the mass distributions show a difference between the
injection and detected populations. This is as expected. The
difference is small, such that for the numbers of events con-

sidered in this study, it is only marginally significant. The dif-
ference need not always be negligible, it would become more
important when considering a larger population of events, or a
set of events with a broader chirp-mass distribution.

B. COMPUTATIONAL TIME

To perform rapid sky localization, we require that our
analysis pipelines are expeditious. Following a detection,
BAYESTAR promptly returns a sky localization, and later LAL-
INFERENCE returns estimates of the sky position plus further
parameters. Here, we present estimates for the computational
time required to run BAYESTAR and LALINFERENCE.

All results are specific to a two-detector network. The LAL-
INFERENCE results are for a (non-spinning) TaylorF2 analy-
sis: this is the least expensive waveform family and provides
medium-latency results. Computational times can be signifi-
cantly longer using other waveforms. Efforts are being made to
optimise and speed up the methods of LALINFERENCE (e.g.,
Canizares et al. 2013, 2015; Farr et al. 2014; Pürrer 2014).

The LALINFERENCE PE is slower than the rapid sky lo-
calization. Distributions of estimated CPU times for the runs
are shown in figure 23. The LALINFERENCE_NEST times are
calculated from log files. This is not entirely reliable as times
may not be recorded for a variety of reasons. In this case, the
reported time is a lower bound on the true value. In figure 23(a)
we show the distribution of run times for both the set of all
estimated times and the subset excluding those we suspect are
inaccurate due to a reported error message. The distributions
are consistent with our expectation that the inaccurate times
are lower bounds. In figure 23(c) we show the cumulative
distribution of run times using only the more reliable set of
estimates. The median (accurately estimated) total CPU time
for LALINFERENCE_NEST is 1.96×106 s = 545 hr (cf. Veitch
et al. 2015) and the median total CPU time for BAYESTAR is
921 s = 15.4 min. Hence, on average LALINFERENCE_NEST
takes ∼ 2000 times as much CPU time as BAYESTAR.

The actual latency of a technique is given by the wall time,
not the CPU time. Five CPU processes were used per LALIN-
FERENCE_NEST run, hence the computational wall time can be
estimated as a fifth of the total CPU time. This gives a median
approximate wall time of 3.92× 105 s = 109 hr. Some pro-
cesses take longer to finish than others, so this is not an exact
means of estimating the time taken for a run to finish. These
calculations also neglect time spent idle rather than running,
which influences the physical wall time required for a job to
complete. In online mode, BAYESTAR is generally deployed in
a 32–64-way parallel configuration. This gives a median wall
time of 28.8 s (14.4 s) for a 32-way (64-way) configuration.
BAYESTAR provides sky-localization ∼ 104 times quicker than
LALINFERENCE, furthermore, none of our BAYESTAR runs
would have taken longer than a minute to complete (Singer
2014, chapter 4).

The length of the LALINFERENCE run depends upon the
desired number of posterior samples. We may characterise the
computational speed by the average rate at which independent
samples are drawn from the posterior: the total number of
(independent, as determined by LALINFERENCE) posterior
samples divided by the total CPU time. The distribution of sam-
pling speeds is shown in figure 24. We use speeds calculated
using both reliably estimated times and those we suspect might
be lower bounds (giving upper bounds for sampling speed) in
figure 24(a), but only the more reliable values in figure 24(b).
The median (accurately estimated) LALINFERENCE_NEST
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Figure 23. Computation time for a run measured in CPU seconds. (a) Distri-
bution of run times. The left (red) distribution is for BAYESTAR and the right
(blue) distribution is for LALINFERENCE_NEST. LALINFERENCE_NEST
times which are reliably estimated are shown in dark blue, while the full
set of times including potentially inaccurately estimated times are shown in
light blue. (b) Cumulative fractions of BAYESTAR runs with computational
times smaller than the abscissa value. (c) Cumulative fractions of LALINFER-
ENCE_NEST runs with total CPU times smaller than the abscissa value, only
reliable times are used here. The 68% confidence interval is enclosed by the
dotted lines, this accounts for sampling errors and is estimated from a beta
distribution (Cameron 2011). Each plot has a different scale.
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Figure 24. Computation speed of LALINFERENCE_NEST runs measured in
independent posterior samples per CPU second. (a) Distribution of sampling
speeds. Speeds based on reliably estimated CPU times are shown in dark blue,
while the full set of speeds, including those using potentially inaccurately
estimated times, are shown in light blue. (b) Cumulative fractions of runs with
computational speeds smaller than the abscissa value, only reliable values are
used here. The 68% confidence interval is enclosed by the dotted lines. All
quantities are calculated based upon total CPU times, not wall times.

sampling speed is 4.40×10−3 s−1 = 15.8 hr−1 corresponding to
one independent posterior sample every 227 s = 6.31×10−2 hr
of CPU time (cf. Sidery et al. 2014; Veitch et al. 2015).

In contract, BAYESTAR computes the likelihood 24576 times.
Its computation speed is thus simply inversely proportional
to the total CPU time. The median BAYESTAR computational
speed is 26.7 s−1 corresponding to one likelihood evaluation
every 37.5 ms of CPU time. The difference between the LAL-
INFERENCE and BAYESTAR computational speeds reflects the
difference in the complexities of their likelihood functions.

The medium-latency PE runs, using the current code, fin-
ish in a few days. This is much longer than is required for
BAYESTAR to produce sky-localization estimates. However,
LALINFERENCE also provides posterior probability distribu-
tions for the other parameters as well as more accurate sky lo-
calization than BAYESTAR for three-detector networks (Singer
et al. 2014).
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C. SUPPLEMENTARY DATA

Data produced for this study are available electronically, as
shown in the following tables. In the print edition, only two
example entries are included in these tables. Further details
are explained in the appendix of Singer et al. (2014). The-
ses tables, along with sky maps are available online at http:
//www.ligo.org/scientists/first2years/. Ta-
ble 8 gives the injected (true) parameters of the 333 simulated
signals used for this study. Table 9 gives the detection param-
eters (the SNRs, FAR and masses returned by the detection
pipeline), and the sky areas calculated by BAYESTAR and LAL-
INFERENCE. Table 10 gives quantities related to PE for the
chirp mass and distance. The second event listed in these ta-
bles is the one used for figure 6. Table 11 is the counterpart
of table 10, but for the 250 events using Gaussian noise. The
events shown in the print edition are the same examples used
by Singer et al. (2014).
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Table 8
Simulated BNS signals of detected events for 2015 scenario using recoloured noise (cf. Singer et al. 2014, table 2). Given are the event ID and simulation
ID which specify the signal; the modified Julian date (MJD) of arrival at geocentre of the signal from last stable orbit; the sky position in terms of the right
ascension α and declination δ (J2000); the binary’s orbital-inclination angle ι; the polarization angle ψ (Anderson et al. 2001, appendix B); the orbital

phase at coalescence φc; the source distance D; the component masses m1 and m2, and the x-, y- and z- components of the spins a1 and a2.

Event Sim MJD/d
α

deg
δ

deg

ι

deg
ψ

deg
φc

deg
D

Mpc

m1

M�

m2

M�
ax

1 ay
1 az

1 ax
2 ay

2 az
2IDa IDb

4532 899 55430.10310 99.9 −30.8 26 349 118 84 1.25 1.36 −0.04 −0.01 −0.01 0.01 0.00 −0.00
4572 1243 55430.52510 227.5 −51.7 48 27 266 61 1.25 1.33 −0.01 −0.00 −0.04 −0.01 −0.01 −0.00

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...

Note. — Table 8 is published in its entirety in the electronic edition of the Astrophysical Journal. A portion is shown here for guidance regarding its form and content.
a This identifier for detection candidates is the same value as the coinc_event_id column in the GSTLAL output database and the OBJECT cards in sky map FITS
headers, with the coinc_event:coinc_event_id: prefix stripped.
b This identifier for simulateds signal is the same value as the simulation_id column in the GSTLAL output database, with the sim_inspiral:simulation_id:
prefix stripped.

Table 9
Detections and sky-localization areas for 2015 scenario using recoloured noise (cf. Singer et al. 2014, table 3). Given are the event and simulation IDs;

the detector network;a the SNR for the network % and for the Hanford %H and Livingston %L detectors;b the maximum-likelihood estimates of
component masses masses mML

1 and mML
2 as reported by GSTLAL; the sky areas returned by BAYESTAR and LALINFERENCE, and the FAR

corresponding to the detection.

mML
1

M�

mML
2

M�

BAYESTAR LALINFERENCE
Event ID Sim ID Network % %H %L CR0.5

deg2

CR0.9

deg2

A∗
deg2

CR0.5

deg2

CR0.9

deg2

A∗
deg2

FAR/s−1

4532 899 HL 13.9 10.1 9.5 1.60 1.08 181.76 753.06 186.22 168.57 788.15 153.09 2.14×10−14

4572 1243 HL 13.2 10.0 8.7 1.73 0.98 227.91 828.23 44.55 203.63 920.10 33.27 1.27×10−13

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...

Note. — Table 9 is published in its entirety in the electronic edition of the Astrophysical Journal. A portion is shown here for guidance regarding its form and content.
a All detections are for a two-detector Hanford–Livingston (HL) network.
b The network SNR is calculated by adding individual detectors in quadrature so %2 = %2

H +%2
L.

Table 10
Parameter-estimation accuracies for 2015 scenario using recoloured noise. Given are the event and simulation
IDs; the injected (true) chirp massM? and distance D?; the posterior mean chirp mass M̄c; the chirp-mass
credible intervals CIMc

0.5 and CIMc
0.9 ; the posterior mean distance D̄, and the distance credible intervals CID

0.5
and CID

0.9. All parameter estimates are calculated by LALINFERENCE.

M?

M�

D?

Mpc
M̄c

M�

CIMc
0.5

M�

CIMc
0.9

M�

D̄
Mpc

CID
0.5

Mpc
CID

0.9

Mpc
Event ID Sim ID

4532 899 1.136613 84.2 1.136689 0.000355 0.000795 64.6 25.0 53.3
4572 1243 1.123169 60.7 1.123286 0.000410 0.000901 67.5 26.7 57.7

...
...

...
...

...
...

...
...

...
...

Note. — Table 10 is published in its entirety in the electronic edition of the Astrophysical Journal. A portion is shown
here for guidance regarding its form and content.

Table 11
Parameter-estimation accuracies for 2015 scenario using Gaussian noise. The columns are the same as in

table 10.

M?

M�

D?

Mpc
M̄c

M�

CIMc
0.5

M�

CIMc
0.9

M�

D̄
Mpc

CID
0.5

Mpc
CID

0.9

Mpc
Event ID Sim ID

18951 10807 1.264368 74.8 1.264410 0.000457 0.001017 70.4 23.1 50.6
20342 21002 1.223944 75.0 1.223740 0.000444 0.001034 71.2 26.0 57.3

...
...

...
...

...
...

...
...

...
...

Note. — Table 11 is published in its entirety in the electronic edition of the Astrophysical Journal. A portion is shown
here for guidance regarding its form and content.
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