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Abstract: We report on a simple method of locking a laser to a bire-
fringent cavity using polarization spectroscopy. The birefringence of the
resonator permits the simple extraction of an error signal by using one
polarization state as a phase reference for another state. No modulation of
the light or the resonator is required, reducing the complexity of the laser
locking setup. This method of producing an error signal can be used on
most birefringent optical resonators, even if the details of birefringence
and eigenpolarizations are not known. This technique is particularly well
suited for fiber ring resonators due to the inherent birefringence of the fiber
and the unknown nature of that birefringence. We present an experimental
demonstration of this technique using a fiber ring.

© 2014 Optical Society of America
OCIS codes: (140.3425) Laser stabilization; (060.2430) Fibers, single-mode.

References and links
1. R. V. Pound, “Electronic Frequency Stabilization of Microwave Oscillators,” Review of Scientific Instruments

17, 490 (1946).
2. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, a. J. Munley, and H. Ward, “Laser phase and

frequency stabilization using an optical resonator,” Applied Physics B Photophysics and Laser Chemistry 31,
97–105 (1983).

3. D. A. Shaddock, M. B. Gray, and D. E. McClelland, “Frequency locking a laser to an optical cavity by use of
spatial mode interference.” Optics letters 24, 1499–501 (1999).

4. J. Miller and M. Evans, “Length control of an optical resonator using second-order transverse modes,” Optics
Letters 39, 2495 (2014).

5. M. D. Harvey and A. G. White, “Frequency locking by analysis of orthogonal modes,” Optics Communications
221, 163–171 (2003).
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1. Introduction

Using optical resonators to measure and control the frequency of a laser is a well-established
technique. The use of locking methods in which multiple modes of a probe light field are
compared are especially effective. Examples include the Pound-Drever-Hall (PDH) locking
scheme [1, 2], in which different frequency components are interfered, and schemes in which
different spatial modes are compared [3, 4]. In general, any two orthogonal modes can be used
to make a phase-sensitive error signal [5]. In this paper, we generalize the locking technique of
Hänsch and Couillaud (HC) [6], which utilizes different polarization modes to produce an error
signal. The HC method uses a polarizer in the resonator to produce a polarization-dependent
resonance condition. Variations of this technique have been demonstrated in free space cavities
by introducing a birefringent crystal into the cavity [7], using a non-planar ring cavity [8], using
a triangular cavity [9], or using the birefringence of dielectric mirrors [10]. In this paper, we
generalize these locking techniques and describe and demonstrate a polarization spectroscopy
locking method that introduces no losses, is simple to implement, and requires no knowledge of
the cavity birefringence. These properties make this method particularly attractive for systems
with inherent or unknown birefringence, such as whispering-gallery-mode (WGM) resonators
[11, 12], cavities formed with crystal-coated mirrors [13, 14], and fiber-based applications.

The resonance properties [15] and the polarization effects of fiber rings have been investi-
gated previously [16, 17, 18]. Small stresses and imperfections in the core of the fiber produce
polarization-dependent phase shifts that are rarely known a priori. This inherent unknown bire-
fringence make this locking technique well suited to use with fiber ring resonators. In addition
to the ease of alignment and mode-matching that comes with using single-mode optical fibers,
fiber rings allow for long cavities and narrow linewidths in compact packages with minimal
back reflection to the laser source. Traditional methods such as PDH can be used to lock to
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Fig. 1. Block diagram of an optical experiment compatible with our locking method. Po-
larization controllers (PCs) on the input and output of the resonator are given by the Jones
matrices Yin and Yout. Matrices R and T represent reflection and transmission of the cou-
pler, respectively, and F represents propagation through the resonator. A polarizing beam
splitter (PBS) follows at the end.

fiber rings [19], but there are techniques unique to fiber optics, such as using Rayleigh scatte-
ring to provide optical feedback [20]. In contrast, the locking scheme we present requires no
modulation or demodulation, which allows for simple electronics and a high-bandwidth error
signal. Further, it avoids the challenges of optical feedback. We demonstrate this technique ex-
perimentally with a fiber ring. This method can be used to produce compact pre-stabilized lasers
for use in fiber-based systems that require stable coherent sources, such as telecommunication
systems [21], lidar [22], fiber gyroscopes [23], and other fiber-based sensors.

2. Polarization in Optical Resonators

Most optical resonators will have some effect on the polarization of circulating light. A bire-
fringent cavity will impart a different phase delay to each polarization and may alter the polar-
ization of the input light. Additionally, cavity losses may be polarization dependent, which can
create additional interesting polarization effects.

These polarization effects can be more easily understood by representing the electric field
of fully polarized light as a two-component complex vector known as a Jones vector. Conven-
tionally, this vector is written using linear horizontal and vertical polarizations as the basis, so
a polarized plane light wave at time t a distance z along the propagation axis will have the form

~E =

(
EH
EV

)
=

(
AH

AVeiφ

)
ei(ωt−kz), (1)

where AH and AV are the amplitudes of each polarization component, φ is the phase difference
between each component, and ω and k are the angular frequency and wavenumber of the light,
respectively. The last exponential is usually dropped since global phases have no effect on the
polarization. In this framework, cavity losses, polarization transformations, and phase changes
can be described by a 2× 2 Jones matrix that acts on the polarization vector. For example, in
this basis the Jones matrix for a half-wave plate with fast axis at angle θ to the horizontal is(

cos2θ sin2θ

sin2θ −cos2θ

)
. (2)

In what follows, we will consider the polarization effects of a fiber ring resonator with a
single input coupler, but this method is completely generalizable to any birefringent cavity.
The amplitude transmittance and reflectance matrices of the input coupler are labelled T and
R, respectively. Let F be the matrix that represents the polarization transformation as the light
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Fig. 2. Cavity reflectance rcav as a function of frequency for a single input mode.
Blue/Solid: Real, Red/Dashed: Imaginary. Input mirror reflectivity r2 = 1− t2 = 0.95, cav-
ity losses (1−α2) = 0.05. Inset: closeup of resonance peak. Note the sharp change in the
imaginary component as the frequency moves through a cavity resonance.

propagates through the fiber ring (see figure 1). Included in this matrix is information about the
overall (frequency-dependent) phase picked up in a single trip through the ring and any losses.
The total cavity amplitude reflectivity matrix Rcav, defined by ~Erefl = Rcav~Ein, is given by

Rcav = R−TF(I−RF)−1T, (3)

where I is the identity matrix. Since RF represents one round trip of the resonator, the two
eigenvectors of this matrix are the eigenpolarizations of the resonator. For positive real eigen-
values of RF, light will resonate.

We assume that the eigenvectors of RF are also eigenvectors of T and R, and therefore
of Rcav, for all frequencies ω . This assumption holds for input optics with polarization-
independent properties or, in cases where the cavity has well-defined fast and slow axes, when
the input optics are aligned with these axes. For fibers, the polarization effects of the couplers
are often much smaller than the effects due to birefringence in the fiber itself [24], so this is a
reasonable assumption for fiber rings.

In this case, the eigenvalues of Rcav are given by

r j
cav(ω) = r j−

t2
j f j(ω)

1− r j f j(ω)
, (4)

where t j, r j, and f j are the eigenvalues of the jth eigenpolarization under T, R, and F, respec-
tively. In general, f j = α jeik j p, where k j = 2πn jν/c is the wavenumber for each eigenpolar-
ization, n j is the effective index of refraction for each eigenpolarization, ν is the frequency of
light, p is the distance the light travels in one round trip of the cavity, and α j is a complex
term that accounts for losses in the cavity and additional phase shifts not due to propagation.
Near resonance, the reflected light undergoes a very large phase shift. Figure 2 displays the real
and imaginary parts of this reflection coefficient r j

cav(ω) for a general optimally coupled cavity.
Note the sharp change in the imaginary component near resonance due to the phase shift.

In general, the wavenumbers for different eigenpolarizations will not be equal, so there will
be a difference in the phase accumulated by each eigenpolarization after one round trip, result-
ing in two longitudinal modes that are on resonance for different ω . As one eigenpolarization
moves through a resonance, it undergoes a large phase shift on reflection, while the other eigen-
polarization does not. In this manner, the latter can be used as a phase reference for the former.



This requires that the resonances to be shifted sufficiently far in frequency. Individual reso-
nance peaks will be separated for round trip phase differences between eigenpolarizations ∆θ

that satisfy

∆θ mod 2π >
2π∆ν

FSR
(5)

and
−∆θ mod 2π >

2π∆ν

FSR
, (6)

where ∆ν is the full width at half maximum of the cavity resonance and FSR is the free spectral
range. Thus, this method can be used even in cavities with small birefringence so long as the
cavity has a large finesse (∝ FSR

∆ν
).

3. The Error Signal

To use the birefringence of the resonator to produce an error signal, light travelling to the
resonator must first be put into the correct input polarization, which can be done using a po-
larization controller (PC). There are many ways to implement such a device, but a common
arrangement consists of a quarter-wave plate, a half-wave plate, and a second quarter-wave
plate, each of which can be rotated independently. These polarization controllers can map an
arbitrary input polarization state to any other polarization state [25]. After reflecting from the
resonator, light goes through another PC before propagating to a polarizing beam splitter (PBS)
with a photodiode (PD) at each output (figure 1). With the correct polarization control settings
before and after the cavity, the difference in power at the two output ports of the PBS pro-
duces an error signal for the resonance condition of the cavity. Expressed in the Jones matrix
formalism the error signal ∆ is proportional to

∆ ∝ |Eout,2|2−|Eout,1|2, (7)

where

Eout,1 =

(
1
0

)
·YoutRcavYin~Elaser

Eout,2 =

(
0
1

)
·YoutRcavYin~Elaser (8)

are the respective projections of the final electric field amplitude onto the PBS polarization
basis states. The proportionality constant will depend on the PD gain. In the above equations,
Yin (out) is the Jones matrix of the input (output) PC and Rcav is the cavity amplitude reflectivity
matrix given by equation (3).

We further assume the cavity eigenpolarizations are orthogonal. This will be true for cavities
with polarization-independent losses, in which R, T, and F are all unitary matrices multiplied
by a constant loss term [17]. The eigenpolarizations will also be orthogonal for cavities in which
one polarization mode is completely extinguished in the cavity, as in the original HC method
[6]. In practice, this approximation holds true for most single-mode fiber rings [17].

Let ~Ea and ~Eb be the normalized eigenpolarizations of RF. The input PCs are set so that the
input polarization is an equal superposition of these eigenpolarizations:

~Ein = Yin~Elaser =
E0√

2

(
~Ea + eiγ~Eb

)
, (9)



where E0 is the amplitude of the electric field and γ is the phase difference between eigenpo-
larization components. The reflected light will be in the polarization state

~Erefl = Rcav~Ein =
E0√

2

(
Rcav~Ea + eiγRcav~Eb

)
=

E0√
2

(
ra

cav(ω)~Ea + eiγ rb
cav(ω)~Eb

)
.

(10)

Because the polarization controllers can map an arbitrary input state to any given output polar-
ization, there exists an arrangement of the output polarization controller that maps one eigen-
polarization to an equal superposition of the PBS polarizations:

~Ea 7→ Yout~Ea =
1√
2

(
1

eiδ

)
(11)

in the PBS basis for some δ . The polarization controller produces a lossless, and therefore
unitary, transformation on the Jones vector, so the other eigenpolarization will be mapped to a
final polarization orthogonal to this with some relative phase shift φ :

~Eb 7→ Yout~Eb =
eiφ
√

2

(
−1
eiδ

)
. (12)

The final polarization state in the PBS basis is then

~Eout = Yout~Erefl =
E0

2

(
ra

cav(ω)

(
1

eiδ

)
+ ei(γ+φ)rb

cav(ω)

(
−1
eiδ

))
(13)

and the sum and difference of the photodiode signals are proportional to

|Eout,1|2 + |Eout,2|2 =
E2

0
2

(
|ra

cav(ω)|2 + |rb
cav(ω)|2

)
(14)

and
|Eout,2|2−|Eout,1|2 = E2

0 Re
{
(ra

cav(ω))∗rb
cav(ω)ei(γ+φ)

}
, (15)

respectively. Re denotes the real part and ∗ represents complex conjugation. Equation (15)
forms the error signal.

In the case of widely separated resonances, near the resonance of one eigenpolarization the
imaginary part of the cavity reflectivity undergoes a sharp change, while the reflectivity for
the other eigenpolarization changes very little. By adjusting the additional phase term in equa-
tion (15), the steep imaginary part of the individual reflection coefficients can be extracted. For
widely separated resonances, this occurs for γ +φ ≈±π/2. The output polarization controllers
vary φ to produce an ideal error signal; therefore, it is not necessary to know or control γ . This
means that the input polarization state can be chosen without regard to the relative phases of
the eigenpolarizations, and that only the sum signal is needed to set the input PCs.

This is a general method for producing an error signal for a birefringent resonator with two
longitudinal modes; for a chosen input polarization satisfying (9), one can always find a physi-
cally realizable Jones matrix Yout that produces an error signal.

Fundamentally, this method is limited only by shot noise, which scales as P−1/2, where P
is the light incident on the cavity. In fiber systems, stimulated Brillouin scattering [26] puts a
limit on the input power, which prevents the reduction of shot noise by turning up the opti-
cal power. However, in practice this method will be limited by acoustic/vibrational noise and
thermorefractive effects in the fiber.
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Fig. 3. A schematic of the experimental setup used to produce the error signal. The fiber
polarization controllers (FPCs) approximate adjustable waveplates to tune the input and
output polarizations to optimize the error signal. The 20-m fiber ring has a finesse of ≈ 60.
The sum signal is used to ensure equal input power in each eigenpolarization.

4. Experimental Design and Data

The experimental setup needed to demonstrate this method is shown in figure 3. We use a fiber
ring resonator as the birefringent cavity. This trivializes cavity alignment and mode-matching.
Birefringence in optical fibers is often viewed as a trait that must be overcome [16], but here
we use it as a feature and exploit it to produce the error signal. We use a direct-coupling fiber
ring setup [15] described below to produce the error signal.

A non-planar ring oscillator (NPRO) Nd:YAG laser emitting at 1064 nm (Lightwave 125-
1064-700) provides the incident light. The output frequency can be controlled by changing the
temperature of the lasing medium crystal or by applying a strain to the crystal via a piezo-
electric actuator. Approximately 1mW of linearly-polarized light is coupled into a single-mode
(SM) optical fiber and encounters the first fiber polarization controller (FPC). Our controller
consists of three rotating paddles with varying lengths of fiber coiled around each paddle. This
approximates a quarter-wave plate, followed by a half-wave plate, and finally another quarter-
wave plate. Using this setup, we are able to map any input polarization to an arbitrary output
polarization.

From there, the light enters an SM 95:5 2×2 coupler spliced to a p = 20 m length of single-
mode fiber, forming a ring. We have measured approximately 5% total losses in the splices and
in the fiber itself. This produces a nearly optimally coupled ring resonator with a finesse of
approximately 60 for both eigenpolarizations and a free spectral range of c/np≈ 10 MHz [27]
for a fiber core with index n≈ 1.6.

Following the coupler, the light again goes through an FPC, and then on to a fiber PBS. Each
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Fig. 4. Observed and modeled (a) Sum and (b) difference of the two output ports of the PBS
for the fiber ring resonator setup. (a) Input power is split between cavity eigenpolarizations.
(b) The output polarization controller was set to optimize the error signal.

output of the PBS goes to a photodiode, the outputs of which are subtracted using a low noise
amplifier to produce the error signal.

To optimize the error signal, the input polarization must be an equal superposition of the
cavity eigenpolarizations. This is achieved by scanning the laser frequency and adjusting the
input FPC until the resonant peaks in the total reflection signal—obtained from the sum of the
PD signals—are balanced, as shown in figure 4(a).

The last step is to adjust the output polarization control paddles to produce an error signal
matching figure 4(b). This is done empirically; no calculation was required to produce the error
signal. Looking at the difference signal of the photodiodes, the polarization controllers are
adjusted to make the peaks in the error signal the same amplitude for both resonances, and to
make the signal symmetric about the frequencies which are halfway between resonances.

A typical reflected power and error signal for the 20-m fiber ring setup is shown in figure
4. Note the agreement with the theoretical model presented in section 3. Once the losses and
coupler properties are measured, the only free parameter fit in the theoretical model is ∆θ . It
is important to note that we do not need to know what the eigenpolarizations of the resonator
are, or which particular input polarization (satisfying equation (9)) is being used to produce this
error signal.

5. Conclusions

We have presented a simple yet general method for producing an error signal for a birefringent
resonator. This method relies on the phase difference acquired by the different eigenpolariza-
tions of the resonator on reflection, where light in one eigenpolarization is used as a phase
reference for light in the other. The method does not require any particular arrangement of
eigenpolarizations, or even that they be known to the experimenter. Instead, all that is required
is the ability to tune both the polarization of the light incident on the resonator and the polariza-
tion of the reflected light before splitting it on a PBS. Since the generation of this error signal
does not require any modulation of the light or of the cavity, the electronics used to produce
the error signal are remarkably simple. Further, because there is no demodulation, a low-pass
filter is not needed to extract the error signal, resulting in a high-bandwidth error signal, a re-
quirement for fast feedback. We have demonstrated this method experimentally by producing



an error signal with a 20-m long fiber ring resonator. While this method can be applied to nearly
any birefringent optical cavity, this technique is especially useful for fiber-based sensors. This
method can be used to produce compact, pre-stabilized lasers, with particular relevance for
fiber-based laser systems.


