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¡  Longitudinal	  sensing	  and	  control	  
§  Plane	  wave	  calculation	  was	  sufficient	  

¡  Alignment,	  mode	  matching,	  mode	  selection	  

§  higher	  order	  modes	  need	  to	  be	  taken	  	  into	  account	  



¡  Solution	  of	  Maxwell’s	  equation	  for	  propagating	  electromagnetic	  
wave	  under	  the	  paraxial	  approximation	  
	  

¡  =>	  Laser	  beams	  change	  their	  intensity	  distributions	  and	  
wavefront	  shapes	  as	  they	  are	  propagated	  
	  
=>	  Any	  laser	  beam	  can	  be	  decomposed	  and	  expressed	  
as	  a	  unique	  linear	  combination	  of	  eigenmodes	  
	  
In	  this	  sense,	  a	  (given)	  set	  of	  eigenmodes	  are	  ortho-‐normal	  basis	  



¡  HG	  modes	  (TEM	  mods)	  :	  one	  example	  of	  the	  eigenmodes	  
	  
	  
	  

	  

A.	  E.	  Siegman,	  Lasers,	  University	  Science	  Books,	  Mill	  Valley,	  CA	  (1986)	  
H.	  Kogelnik	  and	  T.	  Li,	  Appl.	  Opt.	  5	  (1966)	  1550-‐1567	  
Wikipedia	  http://en.wikipedia.org/wiki/Transverse_mode	  



¡  Astronaut	  

¡  World	  cup	  football	  



Trivia	  
¡  There	  are	  infinite	  sets	  of	  HG	  modes	  

§  A	  TEM00	  mode	  for	  an	  HG	  modes	  can	  be	  decomposed	  into	  infinite	  modes	  
for	  other	  HG	  modes	  

¡  The	  complex	  coefficients	  of	  the	  mode	  decomposition	  is	  invariant	  
along	  the	  propagation	  axis	  
§  Where	  ever	  the	  decomposition	  is	  calculated,	  the	  coefficients	  are	  unique.	  	  

	  
¡  No	  matter	  how	  a	  beam	  is	  decomposed,	  the	  laser	  frequency	  stays	  

unchanged!	  	  
(sounds	  trivial	  but	  frequently	  misunderstood)	  
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The equivalent "top hat"
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gaussian beam can
by the formulas

thei} be relat,ed to

1

W(Z) = UJo

R(z)

(+1
== .+ Ei?L.
        v

      ,2

th(z) = tan-1

rk)2,

(zi)

(5)

In other words, the field pattern along the entire gaussian beam is characterized
entirely by the single parameter wo (or q'"o, or zR) at the beam waist, plus the
wavelength A in the medium .

.-eh .

Aperture Transmission

    Before exploring the free-space propagation properties of an ideal gaussian
beam, we might consider briefly the vignetting effects ofthe finite apertures that
will be present in any real optical system . The intensity of a gaussian beam falls
off very rapidly with radius beyond the spot size w . How large must a practical
aperture be before its truncation effects on a gaussian beam become negligible?

   Suppose we define the total power in an optical beam as P = fflal2dA
where dA integrates over the cross-sectional area . The radial intensity variation
of a gaussian beam with spot size w is then given by

                        I(r)= r2zPu2 e-- 2r2/w2 (6)
Tl}e effective diameter and area of a uniform cylindrical beam (a "top hat beam")
With the same peak intensity and total power as a cylindrical gaussian beam 

will
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FIGURE 17.1

Notation for a lowest-order gaussian beam diverging away from its

wast.

   The normalized field pattern ofthis gaussian beaT m at any other plane z will
then be given by

iL(xy,z) (;)1/2
       .. (#)i/2

woqijO(z) exp [-]kz ti 2kx
exp[-7'ki + 2' th(i)]

2 +y

exp [--
2qN(z)

 ¥z2

]

2

+ 112 - 2'k X2 +y
']

3

(i)

W(l) w2(z) 2R(z)

A

where the complex radius of curvature qN(z) is related to the spot size w(z) and
the radius of curvature R(z) at any plane z by the definition

 11
qN(i) E R(i) -2

A

Tw2(z)' (2)

In free space this parameter obeys the propagation law

qN(z) = qo +z =z+ 1'zR, (3)

with the initial value

     rw,2
qo ==2         = IZR¥      A (4)

Note that the value of A in these formulas is always the wavelength of the radi-

ation in the medium in which the beam is propagating.

e)DD-nii)ih--L

¡  Beam	  size	  at	  z	  

¡  Wavefront	  curvature	  at	  z	  	  	  

¡  Gouy	  phase	  

¡  Rayleigh	  range 	   	   	   	  	  

	   	   	   	   	   	  cf.	  Huygens’	  principle	  

⌘(z) = tan�1

✓
z

zR

◆



¡  Gouy	  phase	  shift:	  
	  Relative	  Phase	  shift	  between	  the	  transverse	  modes	  
§  Different	  optical	  phase	  of	  the	  modes	  for	  the	  same	  distance	  

=>	  Different	  resonant	  freq	  in	  a	  cavity	   	  (will	  see	  later)	  
	  

§  “Near	  field”	  and	  “Far	  field”	  

	  



¡  Lateral	  shift:	  

	  
¡  Rotational	  shift:	  

	  

5.6. Modal Expansion of the Misaligned Beam

Figure 5.5: Parallel displacement of the beam.

where the expansion coefficient < pq + |lm+0 > is defined by
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On the assumption that 1 >> ax/w0 and the input beam is the fundamental Gauss-

ian beam in an arbitrary coordinate system, we can neglect the power translation to

the modes higher than first off-axis mode (see Appendix A). After carrying out the

above expansion, we obtain the expression for the laterally misaligned modes as
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From the above expressions, we can see that (ax/w0)2 is the order of the optical power

that is transferred from one mode to others by the parallel transport.

5.6.2 Angular Tilt

Suppose that there is an angular tilt Æx between the beam and the z axis (Fig. 5.6).

In this case, the two coordinate systems are related to each other as
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y0 = y. (5.34)
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Figure 5.6: Angular tilt of the beam.

In the same way as the parallel displacement, we can neglect the modes higher than

the first off-axis mode on condition that the inequality 1 >> Æx/Æ0 >> Æ0 is satisfied.

The misaligned beams are expanded by the Hermite-Gaussian modes of the tilted

coordinates to the second order of the perturbation as
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For the angular tilt, (Æx/Æ0)2 is the order of the optical power which is transferred

from one mode to others.

5.6.3 Parallel Displacement Along the Optical Axis

The parallel displacement along the optical axis has the first-order coupling to the

n = 2 or higher order modes (Refs. 36, 39, and 40):
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K.	  Kawabe	  Ph.D	  thesis:	  http://t-‐munu.phys.s.u-‐tokyo.ac.jp/theses/kawabe_d.pdf	  



¡  TEM	  modes	  with	  matched	  wavefront	  RoC	  
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A gaussian beam can be

trapped by two mirrors of the

proper curvature and spacing.
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Notation and analytical model for analyzing a simple stable two-
mtrror cavlty.

  These two mirr()rs can thus trap the gaussian beam as a sta. nding wave be-
tween the two n'}irrors, with, if the inirrors are large enough in size, negligible
diffraction or `"spillover" losses past the edges of the mirrors. The two mirrors
thus form an optical resonator which can support both the lowef t-order gaussian
rnode, and also higher-order Hermite-gaussian or Laguerre-gaussian modeg., as
resonant modes of the (avity. We will see in this section that this simple de-
scription is, in essence, exactly what happens in elementary stable t,wo-mirror
gausslan resonators.

A

Stable Two-Mirror Resonator Analysis

    In practice, instead of being given a gaussian beam and asked to fit mirrorsto it, we are much more likely to be given two curved mirrors Mi and M2
With radii of curvature Ri and R2 and spacing L, and asked to find the right
gd` ussian beam that will just fit properly between these two mirrors. To analyze
this situation we can use the model in Figure 19.2, assuming that the gaussian
beain will have an (initially unknown) spot size 2vo or Rayleigh range zR =-
7rw3/A, and that the mirrors will be located at distances zi and z2 from the
(initially unknown) location of the beam waist¥
  The essential conditions are then that the wavefront curvature R(z) of the
gdliSsian beam, as given by gaussian beam theory , n)ust match the mirror cur-
Vature at each mirror

, taking into account the specified mirror spacing L. This

nn)nh-- .,.

A.	  E.	  Siegman,	  Lasers,	  University	  Science	  Books,	  Mill	  Valley,	  CA	  (1986)	  



¡  Due	  to	  different	  Gouy	  phase	  shifts	  between	  TEM	  modes,	  
their	  resonant	  frequencies	  are	  different	  

A.	  E.	  Siegman,	  Lasers,	  University	  Science	  Books,	  Mill	  Valley,	  CA	  (1986)	  
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Transverse mode frequencies in various stable gaussian resonators.

Confocal Resonators

q +1

    The confocal resonator re.present,t the situation, in fact. vvrl}ere t,he Ol and
10 transverf e. mo(les associa,t,ed xvith tlie q-th axial mode move out to fal} exa(:tly
halfwa .y betwee}) the. q and q+1 axial modes:, the qll. qO2 and q20 modes of
the q-th axial mode inove out to ('(). ii}(;ide wit}i the q + 2,OO mode: and so fort}}.
The coiifocal resona,tor thus represLents a, ,situation v,There all the e'Lren-syininetr .y'
transverse niodes of the c,a,vit,y ar(i exactly degenerate. at the axial inode fre.quei'i-
cies of the laser; and all the o(ld-syn}n}etry in()des are exactly degenerat,e a(', the
"half -axial" positions n}idvyTay between the axial inode locations .

Scanning Fabry-Perot lnterferometers

    This degeneracy in confocal transverse ino(le frequencies is of consider-
able practical importance for scanning Fabry-P' erot interferometers or optical
frequency tunable filters. A scanning Fabry-Perot interferometer is a passive op-
tical cavity whose length L can be scanned over a few optical half-wavelengths,
usually by means of a piezoelectric crystal or piezoelectric stack mounte(1 be-
hind one of the end mirrors . The resonant frequencies of the cavity can thus be
scanned over a few axial modes or free spectral ranges ofthe cavity.
   If the output signal from a laser is sent through such a cavity while it is being
S(:anned, and the optical signal tra"smitted through the scanning inte)rferometer
is displayed on an oscil}oscope, then a large detected signa} wi}1 be seen every
time the scanning cavity frequenc .v equals one of the oscillation frequencies in the
laser output. The scanning interferometer thus provides an electrically tunable
filter for examining and displaying the frequency components in the laser signal .
   One practical diMculty with such interferometers, however, is the existence of
liigher-order transverse modes in the scanning interferometer . Suppose the laser
MI)iit signal has only a single frequenc .y component, but that the input laser beam

w

763

v

VJ,,r

fFSR	  =	  c/2L	   fTMS	  =	  fFSR	  x	  ζ/(2	  pi)	  

ζ:	  cavity	  round	  trip	  Gouy	  phase	  shift	  
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g2 =- 1-L/R2
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FIGURE 19.3

The resonator g parameters.

Rl R2

L Z

provides. us with three equations, namely,

`,A

R(zl) == zl + zft./zl =

R(Z2) == Z2 + Zft./Z2 =

- Rl
,

+ R2,
(i)

and

L= z2 --- zl. (2)

The minus sign in the first of these equations arises because of a difference in the
sign conventions that we use ii} in describing beam wavefronts or in describing
resonator mirrors. The gaussian wavefront curvature R(i) is usually taken as
positive for a diverging beam, or negative for a converging beam, traveling to
the right; whereas the mirror curvatures Ri and R2 are usually taken as positive
numbers for mirrors that are concave inward, i.e., as seen looking out from within
the resonator, and as negative numbers for mirrors that are convex as seen from
inside the resonator.

A
The g Parameters

    We must then invert these three equations in order to find the gaussian
beam parameters zR., zi and i2 in terms of the specified mirror curvatures and
spacing Ri, R2 and L. Befbre doing this, however, it is customary to define a
pair of "resonator g parameters," gi and g2, which were introduced in the early
days oflaser theory to describe laser resonators, and have since become standard
notation in the field. These parameters are given by

        L
gl i1-        R

l
and

        L
g2 i1-- R

2'
(3)

We will see more of their physical significance later.
   In terms of these parameters we can then find that the trapped gaussian
beam in Figure 19.2 will have a unique Rayleigh range given by

 2I
R =

9i92(1 - gi92)
(9i + g2 - 2gig2)2

L2, (4)

"- /

¡  g-‐factors	  

¡  Stability	  criteria	  

i 
t
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 )
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and that the locations of the two mirrors relative to the gaussian beam waist
will be given by

g2(1 - gi)
Zl =

    gl + g2 - 2glg2
L and

gi(1 - g2)
Z2 =

    gl + g2 - 2glg2
L. (5)

(Note that if mirror Mi is located to the left of the beam waist, so that t}}e waist
is inside the resonator as in Figure 19.2, t,hen zi as measured from the waist will
be a negative number.)
  It is also useful to write out the waist sp' ot size wo, which is given by

     LA 2tt.llo = -
     T

yly2(1 - yly2)
(Yi + y2 - 2yig2)2 '

(6)

,.---bN

and the spot sizes 'tvi and 'tvt2 at tlie ends of t,he resonator, which 2,ire given by

     LA 2tW
l ='     T

92
and

     LA `-)11•r`) =
      r

gl

l   
lr･
     l

 
 
 
 
 
 
 
 
 
j

9i(1 - 9ig2) y2(1 - yiy2)
(7)

These quantities depend only on the resonator y para,meters defined in t,he pre-

ceding, and on the (lliLiantit,y av/Zi5('71il which we will discuss in th() following.

li     Resonator Stability Diagram

    It is iminediately obvious froin Equations 19.4 t() 19.7 that real an(i finit,e
so}utions for the gaussian beain paraineters and spot sizes (;an exist oi'ily if t}'ie
gi,g2 paraineters are confined to a s(,al)ility rai}ge. defined by

O S gig2 S 1¥ (8)

We refer to this as a stability range because this is also exactly the condition
required fbr two mirrors with radii Ri and R2 and spacing L to form a stable
periodic focusing system for rays, as analyzed earlier in Chapter 15.
   In the early days of gaussian resonator theory this stability criterion was
immediately translated into the resoiiator stability diagram shown in Figure 19.4.
Every two-mirror optical resonator can then be characterized by the parameters
gi == 1 -- L/Ri and g2 = 1 -- L/R2, and hence represented by a point in the
gi, g2 plane. If this point falls ii} the shaded stable region, shown in Figure 19.4,
the mirrors correspond to a stable periodic focusing system , and the resonator
(if the mirrors are large enough transversely) will trap a family of lowest and
l}igher-order gaussian modes with gaussian beam parameters given by Equations
l9¥4 through 19.7. Such a stable resonator will thus have a unique set of gaussian
transverse resonator modes ¥
  If the point gi,g2 instead fa11s in any of the unstable regions outside theShaded area , the mirrors will correspond to an unstable periodic focusing system,
ai)d no gaussian beam that will fit properly between the mirrors can be found .
These mirror configurations correspond to the very different (but also very useful)
iinstable optical resonators that we will discuss in a later chapter ¥
  Optica} ray theory and gaussian mode theory thus have a close connection,
W}ii(:h we will study in more detail later on

, even though the diffraction effects
t}iat are an integral part of gaussian beam theory are entirely neglected in th

e

.,d,i,-hL

`

ii)-i--ii-------------N'

JN--ir
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,dt,,,,i,,,

FIGURE 19.4

The stability diagram for a two-mirror optical resonator.

optical ray theory. Note also that these distinct;ions between stability and insta-
bility depend only on the ,g paraineters. and are (to first order) entirely indepen-
dent of either the optical wavele.ngth oi' the transverse size¥ or diinensions of the
res.onator. In the following section we. will exainine in }'nore detail the various
types ()f res.onators that occur in various r(:).gions of the stability diagram, and
the various practical properties of these resonators.

Resonator Circle Diagrams

A      An alternative and less commonly used graphical method for interpreting
the gaussian beam parameters in stable two-mirror resonators is the circ]e dia-
gram of Deschampg. Suppose again that two mirrors of radii Ri and R2 are set
up with spacing L. If we then draw circles with diameters Ri and R2 tangent to
the concave side of each of these mirrors, as shown in Figure 19.5, the intersec-
tion of these two circles is a necessary and suMcient coi}dition for the existence
of a stable gaussian mode in the resonator; and moreover the waist location and
its relative s, ize in the resonator is determined by the line joining the intersection
of these two circles.

REFERENCES

The standard review article in thejournal literature on gaussian resonator modes is H¥
Kogelnik and T. Li, "Laser beams and resonators," Appl. Optics 5, 1550-1567 (October
1966). See also the many other references cited therein.
   Many of the same ideas un gaussian beams as eigenmodes of stable periodic fO'
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¡  General	  case	  

¡  The	  cavity	  is	  stable	  when	  this	  quantity	  ζ	  exists	  

T1300189	  “On	  the	  accumulated	  round-‐trip	  Gouy	  phase	  shift	  for	  a	  general	  
optical	  cavity”	  Koji	  Arai	  https://dcc.ligo.org/LIGO-‐T1300189	  
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product does not change ⇣. In fact, it will be shown in this document that this conjecture
is useful only when 1� gi ⌧ 1 for all i. 2

As long as the simple and exact indicator like the g-factors is not available, we need to
go back to the first principle of the beam calculation: ABCD matrix. If we calculate the
ABCD matrix of the cascaded optical system by multiplying the individual ABCD matrices,
all aspect of the system in terms of the beam parameter can be characterized. This can
be understood by looking at the formula for Gaussian beam transformation by the ABCD
matrix that is derived from Huygens propagarion integral ([1], Chapter 20):

qout =
Aqin +B

Cqin +D
, (8)

where qin and qout are the q-parameters for the input and output beam respectively. A,
B, C, and D are the elements of the ABCD matrix of the optical system. This formula
means that di↵erent optical systems with the same ABCD matrix result in identical beam
transformations.

It is also known that the quantity (A+D)/2 is closely related to cavity stability. The cavity
eigenmodes are supposed to fulfill the beam-reproducing condition qout = qin. By solving this
condition, Eq.(8) with the unitarity condition (i.e. AD �BC = 1), we obtain two solutions
for the forward and backward beams:

q =
A�D ±p

(A+D)2 � 4

2C
(9)

As q is a complex number3, the stability criteria is given by

� 1  A+D

2
 1. (10)

Equivalently, this can be expressed as

0  A+D + 2

4
 1. (11)

As we will find in Section 3,
A+D + 2

4
for a Fabry-Perot cavity corresponds to the product

of the g-factors g1g2. Therefore Eq. (11) is equivalent to Eq. (3).

In this note, the interpretation of Eqs. (10) and (11) are extended for general cavities. It is
derived that the accumulated round-trip Gouy phase shift can be computed only
from the round-trip ABCD matrix of the cavity as:

⇣ = sgnB · cos�1

✓
A+D

2

◆
, (12)

where the value range of cos�1 x is defined to be

0  cos�1 x < 2⇡ (�1 < x  1). (13)

2
Therefore, the product of the generalized g-factors is always positive. There is no sign ambiguity.

3
cf. q = z + izR, where zR is the Rayleigh range.
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gl Ei 1-L/R1

g2 =- 1-L/R2

-

FIGURE 19.3

The resonator g parameters.

Rl R2

L Z

provides. us with three equations, namely,

`,A

R(zl) == zl + zft./zl =

R(Z2) == Z2 + Zft./Z2 =

- Rl
,

+ R2,
(i)

and

L= z2 --- zl. (2)

The minus sign in the first of these equations arises because of a difference in the
sign conventions that we use ii} in describing beam wavefronts or in describing
resonator mirrors. The gaussian wavefront curvature R(i) is usually taken as
positive for a diverging beam, or negative for a converging beam, traveling to
the right; whereas the mirror curvatures Ri and R2 are usually taken as positive
numbers for mirrors that are concave inward, i.e., as seen looking out from within
the resonator, and as negative numbers for mirrors that are convex as seen from
inside the resonator.

A
The g Parameters

    We must then invert these three equations in order to find the gaussian
beam parameters zR., zi and i2 in terms of the specified mirror curvatures and
spacing Ri, R2 and L. Befbre doing this, however, it is customary to define a
pair of "resonator g parameters," gi and g2, which were introduced in the early
days oflaser theory to describe laser resonators, and have since become standard
notation in the field. These parameters are given by

        L
gl i1-        R

l
and

        L
g2 i1-- R

2'
(3)

We will see more of their physical significance later.
   In terms of these parameters we can then find that the trapped gaussian
beam in Figure 19.2 will have a unique Rayleigh range given by

 2I
R =

9i92(1 - gi92)
(9i + g2 - 2gig2)2

L2, (4)

"- /

¡  To	  match	  the	  input	  beam	  axis	  and	  the	  cavity	  axis	  

¡  Corresponds	  to	  the	  suppression	  of	  TEM01/10	  mode	  in	  the	  
beam	  with	  regard	  to	  the	  cavity	  mode	  

¡  4	  d.o.f.:	  (Horizontal,	  Vertical)	  x	  (translation,	  rotation)	  
Note:	  it	  is	  most	  intuitive	  to	  define	  the	  trans/rot	  at	  the	  waist	  
	  
	  
¡  To	  move	  the	  mirrors	  or	  to	  move	  the	  beam?	  



¡  To	  match	  the	  waist	  size	  and	  position	  of	  the	  input	  beam	  to	  
these	  of	  the	  cavity	  

¡  Corresponds	  to	  the	  suppression	  of	  TEM02/11/20	  mode	  in	  
the	  beam	  with	  regard	  to	  the	  cavity	  mode	  
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A gaussian beam can be

trapped by two mirrors of the

proper curvature and spacing.
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FIGURE 192
Notation and analytical model for analyzing a simple stable two-
mtrror cavlty.

  These two mirr()rs can thus trap the gaussian beam as a sta. nding wave be-
tween the two n'}irrors, with, if the inirrors are large enough in size, negligible
diffraction or `"spillover" losses past the edges of the mirrors. The two mirrors
thus form an optical resonator which can support both the lowef t-order gaussian
rnode, and also higher-order Hermite-gaussian or Laguerre-gaussian modeg., as
resonant modes of the (avity. We will see in this section that this simple de-
scription is, in essence, exactly what happens in elementary stable t,wo-mirror
gausslan resonators.

A

Stable Two-Mirror Resonator Analysis

    In practice, instead of being given a gaussian beam and asked to fit mirrorsto it, we are much more likely to be given two curved mirrors Mi and M2
With radii of curvature Ri and R2 and spacing L, and asked to find the right
gd` ussian beam that will just fit properly between these two mirrors. To analyze
this situation we can use the model in Figure 19.2, assuming that the gaussian
beain will have an (initially unknown) spot size 2vo or Rayleigh range zR =-
7rw3/A, and that the mirrors will be located at distances zi and z2 from the
(initially unknown) location of the beam waist¥
  The essential conditions are then that the wavefront curvature R(z) of the
gdliSsian beam, as given by gaussian beam theory , n)ust match the mirror cur-
Vature at each mirror

, taking into account the specified mirror spacing L. This

nn)nh-- .,.



¡  Wave	  Front	  Sensing	  
§  Misalignment	  between	  the	  incident	  beam	  and	  the	  cavity	  axis	  

§  The	  carrier	  is	  resonant	  in	  the	  cavity	  

§  The	  reflection	  port	  has	  
▪  Prompt	  reflection	  of	  the	  modulation	  sidebands	  

▪  Prompt	  reflection	  of	  the	  carrier	  

▪  Leakage	  field	  from	  the	  cavity	  internal	  mode	  

E	  Morrison	  et	  al	  Appl	  Optics	  33	  5041-‐5049	  (1994)	  

no	  signal	  
spatially	  
distributed	  
amplitude	  
modulation	  

Carrier
Sidebands

RF QPD
(WFS)



¡  Wave	  Front	  Sensing	  
§  WFS	  becomes	  sensitive	  	  
when	  there	  is	  an	  angle	  between	  
the	  wave	  fronts	  of	  the	  CA	  and	  SB	  

§  Can	  detect	  rotation	  and	  translation	  
	  of	  the	  beam	  separately,	  	  
depending	  on	  the	  “location”	  of	  the	  sensor	  

§  Use	  lens	  systems	  to	  adjust	  the	  “location”	  of	  the	  sensors.	  
i.e.	  Gouy	  phase	  telescope	  

Sensitive	  at	  the	  far	  field	  
	  
	  
	  
	  
Sensitive	  at	  the	  near	  field	  
	  



¡  Frequent	  mistake:	  	  
What	  we	  want	  to	  adjust	  is	  the	  accumulated	  Gouy	  phase	  shift!	  
Not	  the	  one	  for	  the	  final	  mode!	  
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¡  aLIGO	  implementation:	  	  
Separate	  Gouy	  phase	  of	  a	  set	  of	  two	  WFSs	  with	  90	  deg	  

WFS_A WFS_B

zRzR



¡  Combine	  WFS,	  DC	  QPD,	  digital	  CCD	  cameras	  

LIGO-T070247-01-I

4 Alignment Sensing & Controls

4.1 Overview

The alignment of optical axis of the interferometer cavities as well as the centering of the
beam spots on the optics are achieved and maintained by the Alignment Sensing and Control
Subsystem (ASC).

The Figure 19 gives an overview of the sensing part of the ASC. Some fraction of the light
beams exiting the interferometer dark, reflected and picko⌅ ports is sent to the Wave Front
Sensors (WFS). Each core optic is instrumented with an optical lever and viewed by a CCD
camera. In addition, the transmitted beam of each optic will be monitored by a quadrant
photo detector (QPD). The ASC sensor signals are processed and send to the optics through
the Suspension (SUS) system.

WFS

WFS

WFS

WFS

WFS

WFS

QPD

QPD

From 

Input

Optics

To LSC

To LSC

QPD

To LSC

QPD

Figure 19: ASC sensor diagram.

4.2 Functions of the Alignment Sensing and Control System

The requirements for the residual angular motion of the test masses are specified in T070236.

• Before the interferometer longitudinal degrees of freedom are controlled by the LSC
system the ASC system provides signals for the initial alignment of the cavity axes
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¡  PRC/SRC	  Degeneracy	  

¡  Sigg-‐Sidles	  instability	  &	  alignment	  modes	  
§  G0900594	  

¡  Impact	  on	  the	  noise	  	  
§  G0900278	  /	  P0900258	  

¡  Parametric	  Instability	  
§  HOM	  in	  the	  arm	  cavity	  
-‐>Rad	  Press.	  
-‐>Mirror	  acoustic	  mode	  
-‐>Scattering	  of	  TEM00-‐>HOM	  


