Higher order laser modes in gravitational wave detectors

Koji Arai - LIGO Laboratory / Caltech

Higher order laser modes

- Longitudinal sensing and control
- Plane wave calculation was sufficient
- Alignment, mode matching, mode selection
- higher order modes need to be taken into account

Eigenmodes of the lasers

- Solution of Maxwell's equation for propagating electromagnetic wave under the paraxial approximation
=> Laser beams change their intensity distributions and wavefront shapes as they are propagated
=> Any laser beam can be decomposed and expressed as a unique linear combination of eigenmodes

In this sense, a (given) set of eigenmodes are ortho-normal basis

Hermite Gaussian modes

- HG modes (TEM mods) : one example of the eigenmodes
$E_{m n}(x, y, z)=E_{0} \frac{w_{0}}{w} H_{m}\left(\frac{\sqrt{2} x}{w}\right) H_{n}\left(\frac{\sqrt{2} y}{w}\right) \exp \left[-\left(x^{2}+y^{2}\right)\left(\frac{1}{w^{2}}+\frac{j k}{2 R}\right)-j k z-j(m+n+1) \zeta(z)\right]$

A. E. Siegman, Lasers, University Science Books, Mill Valley, CA (1986) H. Kogelnik and T. Li, Appl. Opt. 5 (1966) 1550-1567

Wikipedia http://en.wikipedia.org/wiki/Transverse_mode

Any beam can be decomposed...

- World cup football

Hermite Gaussian modes (TEM modes)

Trivia

- There are infinite sets of HG modes
- A TEMoo mode for an HG modes can be decomposed into infinite modes for other HG modes
- The complex coefficients of the mode decomposition is invariant along the propagation axis
- Where ever the decomposition is calculated, the coefficients are unique.
- No matter how a beam is decomposed, the laser frequency stays unchanged!
(sounds trivial but frequently misunderstood)

Useful to note

- Beam size at z

$$
w(z)=w_{0} \sqrt{1+\left(\frac{z}{z_{R}}\right)^{2}},
$$

Wavefront curvature at \mathbf{z}

$$
R(z)=z+\frac{z_{R}^{2}}{z}
$$

- Gouy phase

$$
\eta(z)=\tan ^{-1}\left(\frac{z}{z_{\mathrm{R}}}\right)
$$

- Rayleigh range

$$
j \frac{\pi w_{0}^{2}}{\lambda}=j z_{R} .
$$

cf. Huygens' principle

Gouy phase shift

$E_{m n}(x, y, z)=E_{0} \frac{w_{0}}{w} H_{m}\left(\frac{\sqrt{2} x}{w}\right) H_{n}\left(\frac{\sqrt{2} y}{w}\right) \exp \left[-\left(x^{2}+y^{2}\right)\left(\frac{1}{w^{2}}+\frac{j k}{2 R}\right)-j k z-j(m+n+1) \zeta(z)\right]$

- Gouy phase shift:

Relative Phase shift between the transverse modes

- Different optical phase of the modes for the same distance => Different resonant freq in a cavity (will see later)
- "Near field" and "Far field"

Decomposition of misaligned modes

Lateral shift:

$$
P_{x}\left(a_{x}\right) * U_{00+}(x, y, z) \simeq\left[1-\frac{1}{2}\left(\frac{a_{x}}{w_{0}}\right)^{2}\right] U_{00+}+\frac{a_{x}}{w_{0}} U_{10+}
$$

- Rotational shift:

$$
R_{x}\left(\alpha_{x}\right) * U_{00+}(x, y, z) \simeq\left[1-\frac{1}{2}\left(\frac{\alpha_{x}}{\alpha_{0}}\right)^{2}\right] U_{00+}-i \frac{\alpha_{x}}{\alpha_{0}} U_{10+}
$$

K. Kawabe Ph.D thesis: http://t-munu.phys.s.u-tokyo.ac.jp/theses/kawabe_d.pdf

"Cavity" eigenmodes

- TEM modes with matched wavefront RoC

FIGURE 19.2
Notation and analytical model for analyzing a simple stable twomirror cavity.
A. E. Siegman, Lasers, University Science Books, Mill Valley, CA (1986)

"Cavity" eigenmodes

- Due to different Gouy phase shifts between TEM modes, their resonant frequencies are different

弓: cavity round trip Gouy phase shift
A. E. Siegman, Lasers, University Science Books, Mill Valley, CA (1986)

Optical resonator stability

- g-factors

$$
\begin{aligned}
& g_{1} \equiv 1-L / R_{1} \\
& g_{2} \equiv 1-L / R_{2}
\end{aligned}
$$

The resonator g parameters.

- Stability criteria

$$
0 \leq g_{1} g_{2} \leq 1
$$

FIGURE 19.4
The stability diagram for a two-mirror optical resonator

Optical resonator stability

- General case

derived that the accumulated round-trip Gouy phase shift can be computed only from the round-trip $A B C D$ matrix of the cavity as:

$$
\begin{equation*}
\zeta=\operatorname{sgn} B \cdot \cos ^{-1}\left(\frac{A+D}{2}\right) \tag{12}
\end{equation*}
$$

- The cavity is stable when this quantity ζ exists

$$
-1 \leq \frac{A+D}{2} \leq 1
$$

T1300189 "On the accumulated round-trip Gouy phase shift for a general optical cavity" Koji Arai https://dcc.ligo.org/LIGO-T1300189

Cavity alignment

- To match the input beam axis and the cavity axis

- Corresponds to the suppression of TEMo1/10 mode in the beam with regard to the cavity mode
- 4 d.o.f.: (Horizontal, Vertical) x (translation, rotation)

Note: it is most intuitive to define the trans/rot at the waist

- To move the mirrors or to move the beam?

Cavity mode matching

- To match the waist size and position of the input beam to these of the cavity

- Corresponds to the suppression of TEMo2/11/20 mode in the beam with regard to the cavity mode

Angular global control

- Wave Front Sensing

- Misalignment between the incident beam and the cavity axis
- The carrier is resonant in the cavity
- The reflection port has
- Prompt reflection of the modulation sidebands
- Prompt reflection of the carrier
- Leakage field from the cavity internal mode modulation

Carrier

RF QPD
(WFS)

Angular global control

- Wave Front Sensing

Sensitive at the far field

Sensitive at the near field

- Can detect rotation and translation of the beam separately, depending on the "location" of the sensor

- Use lens systems to adjust the "location" of the sensors. i.e. Gouy phase telescope

Angular global control

- Frequent mistake:

What we want to adjust is the accumulated Gouy phase shift! Not the one for the final mode!

Angular global control

- aLIGO implementation:

Separate Gouy phase of a set of two WFSs with 90 deg

aLIGO angular control

- Combine WFS, DC QPD, digital CCD cameras

Other topics

- PRC/SRC Degeneracy
- Sigg-Sidles instability \& alignment modes
- Gogoo594
- Impact on the noise
- Gogo0278 / Pogoo258
- Parametric Instability
- HOM in the arm cavity
->Rad Press.
->Mirror acoustic mode
->Scattering ofTEMoo->HOM

