LIGO-G1401391-V1

Higher order laser modes in gravitational wave detectors

Koji Arai – LIGO Laboratory / Caltech

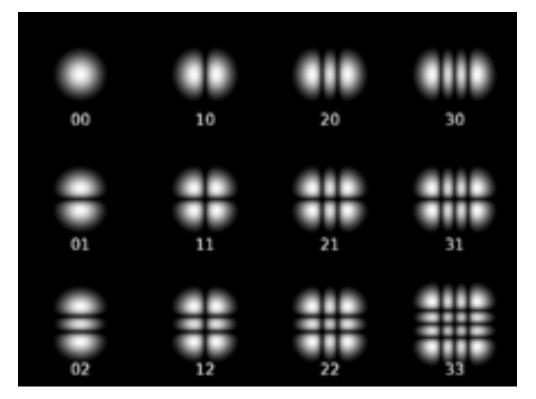
Higher order laser modes

- Longitudinal sensing and control
 - Plane wave calculation was sufficient
- Alignment, mode matching, mode selection
 - higher order modes need to be taken into account

Eigenmodes of the lasers

Solution of Maxwell's equation for propagating electromagnetic wave under the paraxial approximation

 => Laser beams change their intensity distributions and wavefront shapes as they are propagated


=> Any laser beam can be decomposed and expressed as a <u>unique</u> linear combination of eigenmodes

In this sense, a (given) set of eigenmodes are ortho-normal basis

Hermite Gaussian modes

HG modes (TEM mods) : one example of the eigenmodes

$$E_{mn}(x,y,z) = E_0 \frac{w_0}{w} H_m\left(\frac{\sqrt{2}x}{w}\right) H_n\left(\frac{\sqrt{2}y}{w}\right) \exp\left[-(x^2+y^2)\left(\frac{1}{w^2}+\frac{jk}{2R}\right) - jkz - j(m+n+1)\zeta(z)\right]$$

- A. E. Siegman, *Lasers*, University Science Books, Mill Valley, CA (1986) H. Kogelnik and T. Li, Appl. Opt. 5 (1966) 1550-1567
- Wikipedia http://en.wikipedia.org/wiki/Transverse_mode

Any beam can be decomposed...

Astronaut

World cup football

Hermite Gaussian modes (TEM modes)

Trivia

There are infinite sets of HG modes

- A TEMoo mode for an HG modes can be decomposed into infinite modes for other HG modes
- The complex coefficients of the mode decomposition is invariant along the propagation axis
 - Where ever the decomposition is calculated, the coefficients are unique.

No matter how a beam is decomposed, the laser frequency stays unchanged!

(sounds trivial but frequently misunderstood)

Useful to note

Beam size at z

$$w(z) = w_0 \sqrt{1 + \left(\frac{z}{z_R}\right)^2},$$

Wavefront curvature at z

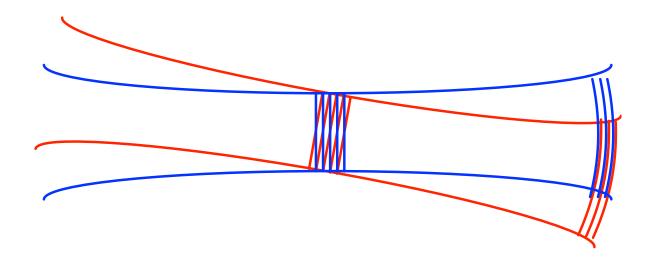
$$R(z)=z+\frac{z_R^2}{z},$$

$$\eta(z) = \tan^{-1}\left(\frac{z}{z_{\rm R}}\right)$$

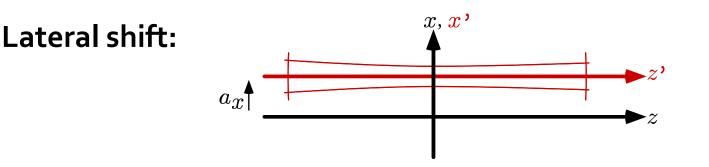
Rayleigh range

$$j\frac{\pi w_0^2}{\lambda} = j z_R.$$

cf. Huygens' principle

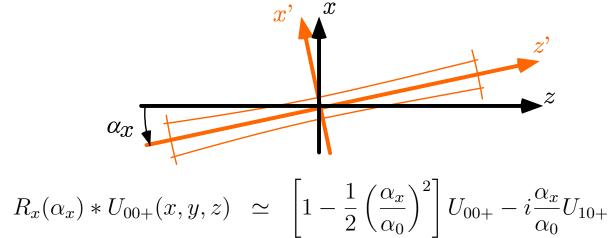

Gouy phase shift

$$E_{mn}(x,y,z) = E_0 \frac{w_0}{w} H_m\left(\frac{\sqrt{2}x}{w}\right) H_n\left(\frac{\sqrt{2}y}{w}\right) \exp\left[-(x^2 + y^2)\left(\frac{1}{w^2} + \frac{jk}{2R}\right) - jkz - j(m+n+1)\zeta(z)\right]$$


Gouy phase shift:

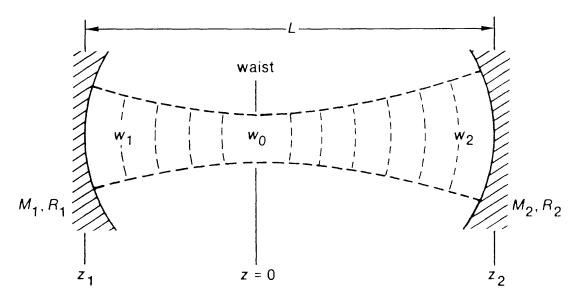
Relative Phase shift between the transverse modes

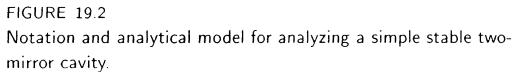
- Different optical phase of the modes for the same distance
 => Different resonant freq in a cavity (will see later)
- "Near field" and "Far field"



Decomposition of misaligned modes

$$P_x(a_x) * U_{00+}(x, y, z) \simeq \left[1 - \frac{1}{2} \left(\frac{a_x}{w_0}\right)^2\right] U_{00+} + \frac{a_x}{w_0} U_{10+}$$

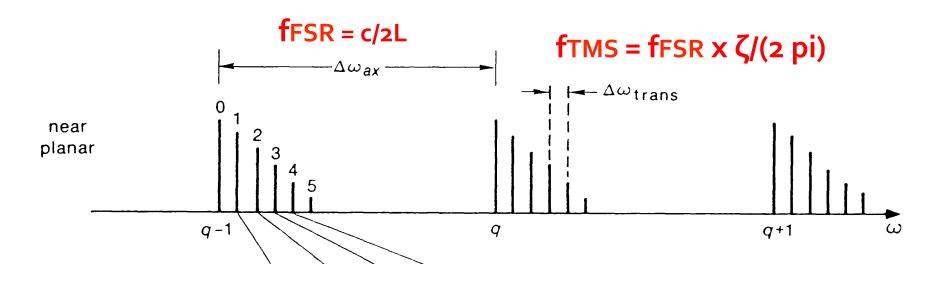

Rotational shift:



K. Kawabe Ph.D thesis: http://t-munu.phys.s.u-tokyo.ac.jp/theses/kawabe_d.pdf

"Cavity" eigenmodes

TEM modes with matched wavefront RoC



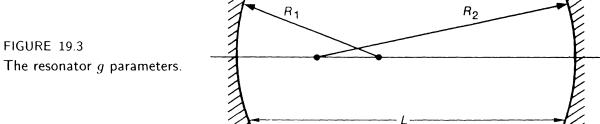
A. E. Siegman, *Lasers*, University Science Books, Mill Valley, CA (1986)

"Cavity" eigenmodes

 Due to different Gouy phase shifts between TEM modes, their resonant frequencies are different

ζ: cavity round trip Gouy phase shift

A. E. Siegman, *Lasers*, University Science Books, Mill Valley, CA (1986)


Optical resonator stability

$$g_1 \equiv 1 - L/R_1$$
$$g_2 \equiv 1 - L/R_2$$

FIGURE 19.3

g-factors

Stability criteria

$$0 \le g_1 g_2 \le 1.$$

planar confocal 1 2 3 $g_1 \equiv 1 - L/R_1$ concentric $g_1 g_2 =$

 $g_2 \equiv 1 - L/R_2$

 $g_1 g_2 = 1$

A. E. Siegman, *Lasers*, University Science Books, Mill Valley, CA (1986)

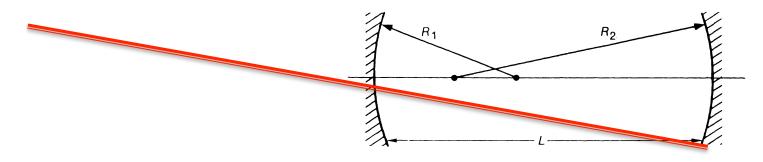
FIGURE 19.4 The stability diagram for a two-mirror optical resonator.

Optical resonator stability

General case

derived that the accumulated round-trip Gouy phase shift can be computed only from the round-trip ABCD matrix of the cavity as:

$$\zeta = \operatorname{sgn}B \,\cdot\, \cos^{-1}\left(\frac{A+D}{2}\right) \quad, \tag{12}$$

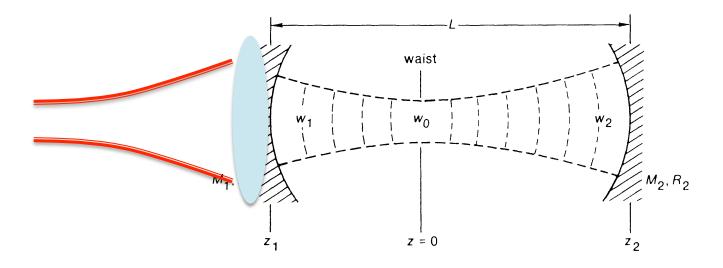

The cavity is stable when this quantity ζ exists

$$-1 \le \frac{A+D}{2} \le 1.$$

T1300189 "On the accumulated round-trip Gouy phase shift for a general optical cavity" Koji Arai https://dcc.ligo.org/LIGO-T1300189

Cavity alignment

To match the input beam axis and the cavity axis

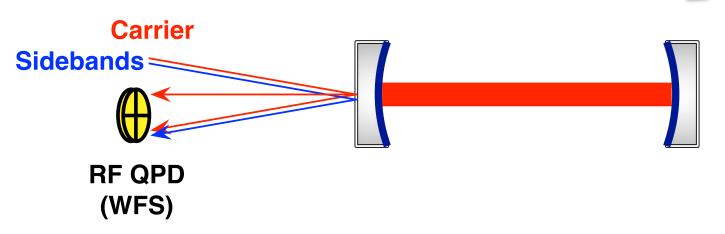


 Corresponds to the suppression of TEMo1/10 mode in the beam with regard to the cavity mode

- 4 d.o.f.: (Horizontal, Vertical) x (translation, rotation) Note: it is most intuitive to define the trans/rot at the waist
- To move the mirrors or to move the beam?

Cavity mode matching

 To match the waist size and position of the input beam to these of the cavity

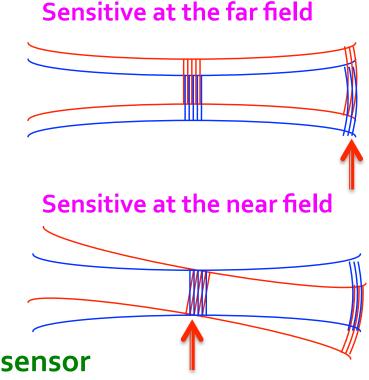


 Corresponds to the suppression of TEMo2/11/20 mode in the beam with regard to the cavity mode

- **Wave Front Sensing**
 - Misalignment between the incident beam and the cavity axis
 - The carrier is resonant in the cavity
 - The reflection port has
 - Prompt reflection of the modulation sidebands
 - Prompt reflection of the carrier
 - Leakage field from the cavity internal mode

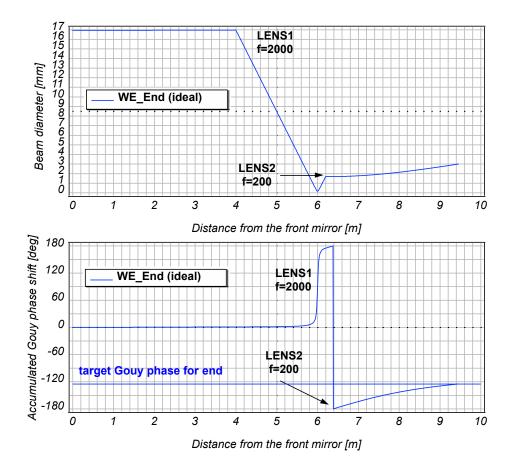
no signal

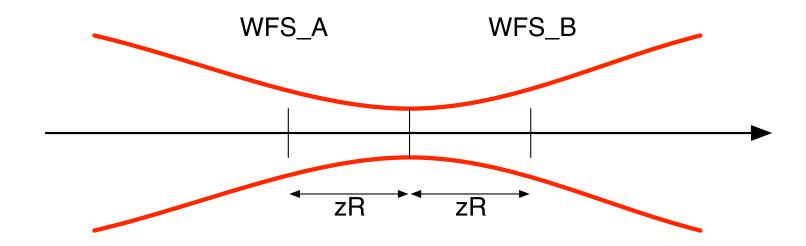
spatially distributed amplitude modulation



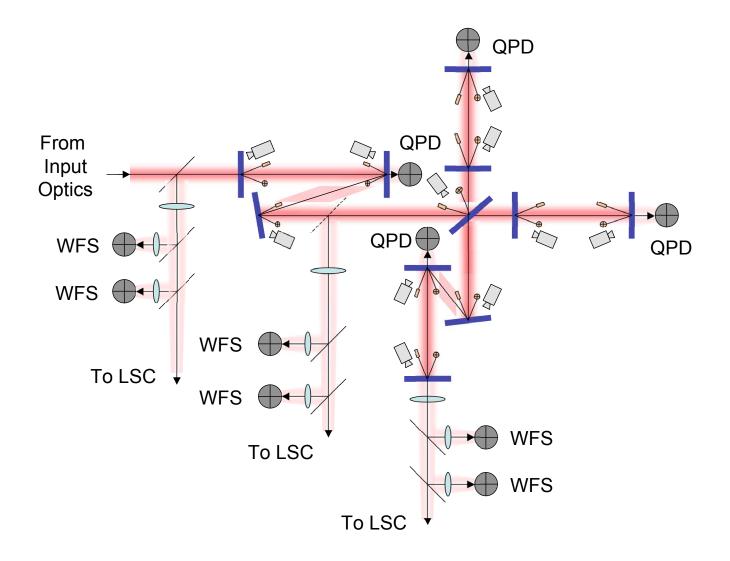
E Morrison et al Appl Optics 33 5041-5049 (1994)

- **Wave Front Sensing**
 - WFS becomes sensitive when there is an angle between the wave fronts of the CA and SB
 - Can detect rotation and translation


 of the beam separately,
 depending on the "location" of the sensor


Frequent mistake:

What we want to adjust is the accumulated Gouy phase shift! Not the one for the final mode!


aLIGO implementation:

Separate Gouy phase of a set of two WFSs with 90 deg

aLIGO angular control

Combine WFS, DC QPD, digital CCD cameras

Other topics

PRC/SRC Degeneracy

Sigg-Sidles instability & alignment modes

G0900594

Impact on the noise

Gogoo278 / Pogoo258

Parametric Instability

- HOM in the arm cavity
 - ->Rad Press.
 - ->Mirror acoustic mode
 - ->Scattering of TEMoo->HOM