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LIGO Noise Sources

—

® Seismic noise

® Alignment and angular noise coupling to gravitational wave channel

® Newtonian gravitational noise

® Auxiliary length control coupling to gravitational wave channel
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LIGO Feedback vs. Feedforward
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LIGO Feedback vs. Feedforward \% 4

—

Feedback
FB ® Pros:
>| A \ ® Can handle small variations in
T the plant
9_) TF ® Only need rough model of plant
A AVA ® Cons:
¢ Time lag

® Disturbances must pass through system

Feedforward
® Pros: ® Cons:
® Does not require disturbance to e Requires very accurate
propagate through system model of system
® Predicts incoming disturbances ® Can only handle disturbances

that are externally witnessed

—
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LIGO Seismic Noise Cancellation

—
Global seismic cancellation has been done before, but most of the

focus in recent years has been on local seismic cancellation
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LIGO Seismic Noise Cancellation
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Global seismic cancellation has been done before, but most of the
focus in recent years has been on local seismic cancellation
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® Static noise cancellation simulations, and
adaptive implementation at the 40m:

® J.C. Driggers, M. Evans, K. Pepper, R. Adhikari "Active noise cancellation
in a suspended interferometer” Rev. Sci. Instrum. 83, 024501 (2012) Go to paper
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http://arxiv.org/abs/1112.2224
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LIGO Seismic Noise Cancellation
—
Global seismic cancellation has been done before, but most of the
focus in recent years has been on local seismic cancellation
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® Static noise cancellation simulations, and
adaptive implementation at the 40m:

® J.C. Driggers, M. Evans, K. Pepper, R. Adhikari "Active noise cancellation
in a suspended interferometer” Rev. Sci. Instrum. 83, 024501 (2012) Go to paper

® Static noise cancellation implementation during Enhanced LIGO:

® R. DeRosa, J. C. Driggers, D. Atkinson, H. Miao, V. Frolov, M. Landry, J. A. Giame,
R. Adhikari "Global feed-forward vibration isolation in a km scale interferometer”
Class. Quantum Grav. 29, 215008 (2012) Go to paper
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http://arxiv.org/abs/1112.2224
http://arxiv.org/abs/1204.5504

LIGO Optimal Wiener Filters

Ground
Motion

d(n e(n
Plant./ ( L@ ( )> Noise-suppressed signal
Coupling _

Wiener y(n)
Filter W

R is auto-correlation matrix - how is sensor self-correlated?

p is cross-correlation vector - how are the sensor and the desired signal related?
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LIGO Optimal Wiener Filters /%)

Ground
Motion

d(n e(n
Plant./ ( L@ ( )> Noise-suppressed signal
Coupling _

Wiener y(n)
Filter W

R is auto-correlation matrix - how is sensor self-correlated?

p is cross-correlation vector - how are the sensor and the desired signal related?

Define a cost function, set derivative equal to zero: ¢ = E[e(n)?]
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Optimal Wiener Filters /@
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LIGO

Ground
Motion

d(n e(n
Plant./ ( L@ ( )> Noise-suppressed signal
Coupling _

Wiener y(n)
Filter W

R is auto-correlation matrix - how is sensor self-correlated?
p is cross-correlation vector - how are the sensor and the desired signal related?
§ = Ele(n)’]

Define a cost function, set derivative equal to zero

Numerical precision problems arise for matrix inversion and
witness pre-filtering
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LIGO Wiener Filters ix 2
i
—
Cost function is the mean square error between the target

signal and the estimate of the target

r = witness sensor
2

N .
1 d = target signal
> 2 Z Zo Witi=j w = Wiener coefficients
J:

N = filter order

OMSE

0
8wj

To find the extrema, we set

N
This gives us the Wiener-Hopf equations i = » _ h;jR(j_s)
j=0

1s a symmetric Toeplitz matrix R[0] R[] R[N]
R is a sy tric Toeplit t ( R R[0 L RINZ] \
Ro-n =1 . 5 ;
\ RIN] RIN-1] - R[]
e ———
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LIGO Static Seismic Noise Cancellation

L)

Sensor locations relative to

core optics

Faraday

'

)

Horizontal axes only,
no vertical information used
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LIGO Static Seismic Noise Cancellation
—

LLO Power Recycling Cavity Residual Length

_(')n — || Local damping

|—off |
|- - - Ground Motion

|

m

VHz

Control Signal [

Frequency |Hz]
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LIGO Static Seismic Noise Cancellation
—
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LIGO Static Seismic Noise Cancellation

—

LLO Power Recycling Cavity Residual Length

" [—on || Local damping
* | —Off |
= @ |~ -~ ~Ground Motion
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&%
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8 10-9 .................................................................
Lower glitch rate
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LIGO-G1401379 December 2014 11



LIGO Static Seismic Noise Cancellation

—

® Challenges:

® Measure transfer function between

actuator and desired signal to 1% T T N
/
f \
. . I
® Fit measured transfer function, for ! : .
. . i I I Isolation
pre-filtering use, before Wiener | | Stack
|
filter was calculated ' Sensor &
< Actuator

—

Suspension

® Then fit Wiener filter to implement
in digital real-time system

Seismometer

-
T, ——m -~

—
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® Challenges:

® Measure transfer function between
actuator and desired signal to 1%

® Fit measured transfer function, for
pre-filtering use, before Wiener
filter was calculated

® Then fit Wiener filter to implement
in digital real-time system
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Isolation
Stack

® Challenges:

Sensor &
Actuator

® Measure transfer function between

actuator and desired signal to 1% o
® Fit measured transfer function, for A AL Rt
pre-filtering use, before Wiener = A4
filter was calculated é 2 ) B
S -40" ~>~Measurement,
® Then fit Wiener filter to implement = ol e 1o Residual
in digital real-time system
180+

135
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LIGO Adaptive Noise Cancellation % i

Similar to static
technique, but can
follow changes in

transfer function

Adjust the
feedforward filter in
realtime for optimal

cancellation
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LIGO Adaptive Noise Cancellation

Similar to static technique, but can follow changes in transfer function

Should converge to the static Wiener solution
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LIGO Adaptive Noise Cancellation \%/

Similar to static technique, but can follow changes in transfer function

Should converge to the static Wiener solution

We use a leaky normalized filtered-x least mean squared (LMS) algorithm

Combination of 3 modifications to the simple LMS algorithm
w(n+1) = w(n) + p(l —7)z(n)e(n)

w is the vector of filter weights
w is the step size
Z is the witness signal

€ is the residual error signal

LIGO-G1401379 December 2014
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LIGO Adaptive Noise Cancellation % i

Similar to static technique, but can follow changes in transfer function

Should converge to the static Wiener solution

We use a leaky normalized filtered-x least mean squared (LMS) algorithm

Combination of 3 modifications to the simple LMS algorithm
w(n+1) = w(n) + p(l —7)z(n)e(n)

w is the vector of filter weights
w is the step size
Z is the witness signal

€ is the residual error signal

Leaky: allow response to decay using (1 — 7)

Normalized: p is a function of time p(n) = ﬂ(nﬁ;f(n>

Filtered-x: pre-filter Z(n) with an estimate of the plant transfer function

—
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LIGO  Adaptive Noise Cancellation &7/
oW (v
Implemented at the 40m
[ Power spectrum | X arm —— GiLSCXARMLOUT [ Power spectrum | Mode Cleaner
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LIGO Future Extensions \% J
.

® Offline analysis of S5 H1/H2 to potentially improve stochastic searches

® Other external sensors
® [aser power monitors
® Microphones

® Magnetometers
® Offline analysis on One Arm Test data to see aLIGO potential
® Remove auxiliary length degrees of freedom from gravitational wave channel

® Implement online (work already begun at LLO by others)
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