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¡  Ph.D at Univ of Tokyo  (1995-1999) 
§  Design & build of TAMA300 double-pendulum suspensions 
§  Interferometer length sensing for power recycled Fabry-Perot 

Michelson Interferometer 

¡  Commissioning and science runs of TAMA300 
interferometer (1999-2009) 

¡  @LIGO Caltech (2009-) 
Output mode cleaner development 
eLIGO/aLIGO commissioning 



¡  Mission: 
To convey technical knowledge necessary for building 
and operating the LIGO India detector, or similar 
interferometer, including prototypes 

 
¡  by going through:  

§  the common technologies in laser interferometer 
GW detectors 

§  Detailed description / discussion about the 
interferometer sensing & control 



Lecture plan 
 
DAY1 General overview of laser interferometer GW detectors 

 Interferometer configurations 
  

DAY2 Noises in GW detectors 
 
DAY3 Control system & its modeling 
 
DAY4 Interferometer length sensing and control 

 Feedforward noise cancellation 
 Quantum noise 

 
DAY5 Higher-order laser modes 



  



¡  General Relativity 
§  Gravity = Spacetime curvature 
§  Gravitational Wave = Wave of spacetime curvature 

¡  GW 
§  Generated by motion of massive objects 
§  Propagates with speed of light 
§  Cause quadrupole deformation 

of the spacetime 

GW

Free  
mass



¡  What does the balls feel? 
§  The balls are free mass (= free falling) 
§  ...Geodesic lines 

¡  Q. What happens  
if the balls are connected  
by bars 

GW

Free  
mass



¡  Michelson-type interferometers are used 
¡  Differential change of the arm path lengths 
          =>change interference 
       condition   

Beamsplitter	 

Mirror	 Mirror	 

Laser	 

Interference  

Fringe	 



¡  Antenna pattern (at low frequencies) 

B. Brief overview of sources

All terrestrial detectors of gravitational waves are focused
roughly on the audio frequency band due to technological
limits of the detectors and probable source characteristics. In
order to verify all of the properties of the waves, one would
like to follow in the footsteps of Heinrich Hertz by generating
and then detecting the gravitational waves. However, due to
the relatively high rigidity of space-time, it is not feasible to
generate measurable amounts of gravitational radiation in the
laboratory (Romero and Dehnen, 1981) by conventional
means or even through the use of nuclear explosives arranged
to produce quadrupolar mass-energy accelerations (Chapline,
Nuckolls, and Wood, 1974). Therefore, we look to astrophys-
ical and cosmological sources to provide the radiation. In this
way, the hunt for gravitational radiation leads to the develop-
ment of a new branch of astronomy. Previous overviews
(Hawking and Israel, 1989; Cutler and Thorne, 2002) covered
the list of known sources as well as describing the astrophys-
ical and cosmological science that can be extracted from them
(Sathyaprakash and Schutz, 2009).

1. Pulsars

One of the earliest predicted sources of gravitational ra-
diation were the recently discovered pulsars (Hewish et al.,
1968). The extremely stable period of pulsation of these
rotating neutron stars tells us that the energy lost to gravita-
tional radiation must be small (Ipser, 1971) at best. The
compensating factor that makes detection a possibility is
the periodic nature of the signal; after correcting for the
Doppler modulations from the detector motions relative to
the source (Brady et al., 1998; Abbott et al., 2009b), one can
improve the signal-to-noise ratio by the square root of the
integration time.

Observations (Chakrabarty et al., 2003) of a ‘‘speed limit’’
for pulsars seem to support the theory (Bildsten, 1998) that
gravitational radiation works to brake the spin of the fastest
pulsars before they are ripped apart by their relativistic spins.
Expectations from neutron star models indicate that the ellip-
ticity may range from 10!9 to 10!6 (Ushomirsky, Cutler, and
Bildsten, 2000; Owen, 2006) for conventional neutron stars
and somewhat larger for more exotic stars (Owen, 2005).

In order to greatly improve the sensitivity of the pulsar
searches, the Einstein @ Home (2012) project distributes
some of the Laser Interferometer Gravitational-wave

Observatory (LIGO) data to the home computers of an interna-
tional team of volunteers. Although no gravitational waves
have been detected so far, this project has detected pulsars
using electromagnetic astronomical data (Knispel et al., 2011).

2. Transients

The signal which all ground-based detectors are aimed
toward is the inspiral and merger of compact binary objects:
neutron stars (NS) and black holes (BH). Perhaps 1=3 to 1=2
of the stars in the Universe have companions (Lada, 2006).
Through various mechanisms, some small fraction of these
can evolve into a NS/NS, NS/BH, or BH/BH binary [white
dwarfs are not quite so compact; mass transfer between the
stars begins (Farmer and Phinney, 2003; Lorén-Aguilar et al.,
2005) well before the inspiral signal enters the accessible
band of the ground-based detectors]. These compact binaries
will eventually merge after they have released their orbital
energy through gravitational radiation. The Hulse-Taylor
binary is one such binary; it is expected to merge in
"3# 108 yr. Estimates of the binary merger rates
(Phinney, 1991; Belczynski, Kalogera, and Bulik, 2002) us-
ing bounds from astrophysical observations as well as pre-
dictions from population synthesis models vary by a few
orders of magnitude. For the upcoming second generation
interferometric detectors, the compact binary detection rate
may be as low as 1=yr or as high as 3=day (Abadie et al.,
2010). A combination of extensive analytic methods (Faye
et al., 2012) and high accuracy numerical simulations
(Scheel et al., 2009; Szilágyi, Lindblom, and Scheel, 2009;
Ajith et al., 2012) have allowed for the calculation of accurate
wave forms by which one can search for these binary inspirals
using matched template methods (Allen et al., 2012).

It is most likely that the largest fraction of gravitational-
wave sources have not yet been modeled well enough to use a
template based search. These will include sources such as
stellar collapse leading to supernovae (Ott, 2009), the boiling
of the cooling neutron star at the end of the collapse (Liu and
Lindblom, 2001), and soft gamma-ray repeaters (Abbott
et al., 2008). The most exciting prospect in making a broad-
band search for gravitational waves is to make a discovery of
an entirely unexpected astrophysical phenomenon (Cutler
and Thorne, 2002; Ando et al., 2012).

3. Cosmic background radiation

Starobinskii (1979) and others (Rubakov, Sazhin, and
Veryaskin, 1982; Abbott and Wise, 1984) pointed out that a
period of cosmic expansion in the early Universe could
produce a spectrum of gravitational radiation. Allen (1988)
later derived the full spectrum of gravitational waves ex-
pected from a standard inflationary universe scenario. This
model predicts a nearly white spectrum (in units of energy) in
the frequency band from 10!15 to 1010 Hz (Turner, 1997).
This radiation from the early Universe traveled to our detec-
tors with very little scattering along the way giving us a direct
measurement of the state of the Universe at a time which is
less than 10!30 s after the big bang (Weinberg, 2004). A
review of prospects for detecting this inflationary background
as well as possible astrophysical foregrounds is given by
Allen (1997).

FIG. 2 (color online). Interferometer antenna response for (þ)
polarization (left), (#) polarization (middle), and unpolarized waves
(right).
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¡  The effect of GW is very small 
¡  h ~ 10-23 => distance of 1m changes 10-23m 

¡  Corresponds to: 
 change by ~0.01 angstrom (or 1pm)  
for distance between the sun and the earth 

1.5 x 1011 m 

 

changes 

by 1/100 of a H atom diameter!	 



¡  GW Detection = Length measurement 
¡  The longer arms, the bigger the effect 

§  GW works as strain => dx = hGW x Larm 

§  Until cancellation of the signal happens 
 in the arms 

§  Optimum arm length 

 

 
 

Laser	 

Photodetector	 

Mirror	 

Mirror	 

Laser	 

Photodetector	 

Mirror	 

Mirror	 

€ 

4Larm = λGW (= c / fGW )

€ 

Larm = 75km  (for  fGW =1kHz)



Still shorter than the optimum length  
=> Use optical cavity to increase life time of the photons in the arm	 

n  LIGO  Observatories
Hanford  /  Livingston  4km

 
 
 
 
 
 
 
 \ 
 
 
 
 
 
  

c.f. Virgo (FRA/ITA) 3km, KAGRA (JPN) 3km, GEO (GER/GBR) 600m 



¡  “Still simplified” LIGO Interferometer 

Laser	 
Mode 
Cleaner 
L~16m	 

Beamsplitter	 

4km 
Fabry-Perot 
Cavity	 

4km Fabry-Perot Cavity	 

Vacuum Chamber /  
Beam tube	 

Photodetector	 

Data Acquisition 
/Analysis System	 

Mirror Suspension	 

Vibration 
Isolation 
System	 

Mirror	 

Digital Control System 

Recycling 
Mirrors	 



¡  3	  fundamentals	  of	  the	  GW	  detector	  
¡ Mechanics	  
¡  Optics	  
¡  Electronics 
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¡  An IFO produces a continuous signal stream 
in the GW channel 

¡  The detector is fixed on the ground 
=> can not be directed to a specific angle 

 
¡  GWs and noises are, in principle, indistinguishable 
 => Anything we detect is GW  

 
¡  Reduce noises! 

¡  Obs. distance is inv-proportional to noise level 
¡  x10 better => x10 farther => x1000 more galaxies 



¡  Sensitivity (=noise level) of Enhanced LIGO 

h=  2x10-‐‑‒23  /rtHz

Laser  shot  noise
Laser  radiation  

pressure  noise
thermal  noise
seismic  noise
Laser  intensity

/frequency  noise

electronics  noise
digitization  noise
angular  control  noise

......



¡  aLIGO sensitivity 

Preliminary

x=  4x10-‐‑‒20  m/rtHz
h=  1x10-‐‑‒23  /rtHz
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¡  Compact Binary Coalescence 
=> Chirp signal  
§  NS-NS binaries  

Accurate waveforms predictable 
(Post Newtonian approximation) 
=> Template banks & Matched 
Filter analysis (amplitude & phase 
information) 

§  BH-BH binaries 
Similar waveforms, 
but more difficult to predict 
because of earlier merging 

Mat]ched	  filtering	  analysis	  
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f_ISCO	  =	  1/(pi	  (6	  M)^3/2)	  

Msolar	  =	  1.989*^30;	  
c	  =	  2.9979*^8;	  
G	  =	  6.67*^-‐11;	  

c	  =	  299792458;	  
G	  =	  6.67*^-‐11;	  
m1	  =	  1.4	  Msolar;	  
m2	  =	  1.4	  Msolar;	  
Msolar	  =	  1.989*^30;	  
	  
m	  =	  m1	  +	  m2;	  
	  
fISCO	  =	  c^3/(6^(3/2)*Pi*G*m)	  

B.	  F.	  Schutz,	  “Gravitational	  wave	  astronomy”,	  	  
Class.	  Quantum	  Grav.	  16	  (1999)	  A131.	  



¡  Binary inspiral range 
§  Chirp waveform PSD 

§  ISCO freq (HF cut off freq) 
 
§  Horizon range (Integrated SNR of 8) 

§  In the control room we use D/(2.26)  
taking all sky average 

https://dcc.ligo.org/LIGO-‐T0900499/public	  
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In the next section, we define the inspiral horizon distance and present a summary of the inspiral horizon distance
data from S5/VSR1 CBC analyses. In section 3, we explain how we used the inspiral horizon distance data to compute
a spectral density that is representative of each detector’s sensitivity for CBC searches in S5/VSR1.

II. INSPIRAL HORIZON DISTANCE

The (power) spectral density S
n

(f) for a stationary random process n(t) is defined implicitly by the relation

1
2
S

n

(f)�(f � f 0) = hñ(f)ñ⇤(f 0)i, (1)

where ñ(f) is the Fourier transform of the random process. The spectral density is a measure of the mean square
noise fluctuations at a given frequency. In LIGO and Virgo applications, we treat the strain noise in a detector as a
stationary random process. If the noise in the detector were truly stationary, then the noise spectral density would
completely characterize the sensitivity of the detector as a function of frequency.

As mentioned above, the noise in the LIGO and Virgo detectors is not stationary. However, by measuring the
spectral density over a short enough timescale, we are able to approximate the noise as stationary. The chosen
timescale must also be long enough that we can form an accurate estimate of the spectral density. In the S5/VSR1
CBC searches, the spectral density was computed on 2048-second blocks of contiguous data [8]. We account for long
timescale non-stationarities by using a di↵erent spectral density for every 2048 seconds.

In assessing the overall performance of a detector for CBC searches, we use the inspiral horizon distance data from
S5 and VSR1 to identify the “typical” sensitivity of the interferometers. The inspiral horizon distance of a detector
is the distance at which an optimally oriented and optimally located equal-mass compact binary inspiral would give
an average signal to noise ratio (SNR) of ⇢ = 8 in the interferometer. If h̃(f) represents the Fourier transform of the
expected signal, then the average SNR this signal would attain in a detector with spectral density S

n

(f) is given by

h⇢i =

s

4
Z 1

0

|h̃(f)|2
S

n

(f)
df. (2)

We find the inspiral horizon distance by setting h⇢i = 8 and solving for the distance D to the inspiral event which
parametrizes the waveform h̃(f). Thus, the inspiral horizon distance combines the spectral density curve with the
expected inspiral waveform to produce a single quantity that summarizes the sensitivity of the detector at a given
time.

Practical considerations require modifications to the limits of the integral. In the CBC search code, we compute
the signal to noise ratio by

h⇢i =

s

4
Z

f

high

f

low

|h̃(f)|2
S

n

(f)
df. (3)

The lower limit is determined by our ability to characterize the noise at low frequencies. In the S5 CBC search, we
took f

low

= 40Hz as the low frequency cut-o↵ in computing the inspiral horizon distance. For Virgo in VSR1, the
low frequency cut-o↵ was f

low

= 60Hz. The upper limit of the integral is the innermost stable circular orbit (ISCO)
frequency,

f
isco

=
c3

6
p

6⇡GM
, (4)

where M is the total mass of the binary system. For binary neutron star systems, f
isco

= 1570Hz. However, the
inspiral horizon distances reported here are culled from the S5 high mass search (except for Virgo), which down-
sampled the h(t) data to 2048 Hz, so that the integral was cut o↵ at f

Ny

= 1024 Hz. However, this is a < 1% e↵ect,
even in computing the inspiral horizon distance for low mass systems, because most of the SNR is accumulated in the
“bucket” of the noise curve; we neglect it here.

The inspiral waveform for CBCs is accurately given in the frequency domain by the stationary phase approximation.
For an optimally oriented and optimally located equal mass binary, the signal that appears at the interferometer (in
this approximation) is given by

h̃(f) =
1
D

✓
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24c3
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(GM)5/6(⇡f)�7/6ei (f ;M), (5)
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FIG. 1: Distribution of inspiral horizon distance for the four gravitational wave detectors H1, L1, H2 and V1 for all of S5
and VSR1. This histogram includes each 2048-second analyzed segment from S5 and VSR1. The distributions shown here
correspond to the 1.4 -1.4 solar mass inspiral horizon distance for the LIGO detectors. For the Virgo detector, we have plotted
the 1.0-1.0 solar mass inspiral horizon distance distribution, scaled by (2.8/2)5/6 to adjust for the lower mass.

where M is the chirp mass of the binary, D is the distance to the binary and  is a real function of f , parametrized
by the total mass M . Setting h⇢i = 8 and inserting this waveform into eqn. 3, we find that the inspiral horizon
distance is given by
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where D is expressed in Mpc. The inspiral horizon distance is defined for optimally located and oriented sources.
For a uniform distribution of source sky locations and orientations, we divide the inspiral horizon distance by 2.26 to
obtain the SenseMon range [9] reported as a figure of merit in the LIGO and Virgo control rooms.

In practice, it is convenient to measure distances in Mpc and mass in M�. It is useful therefore to specialize eqn.
6 to this unit system. Further, since we measure the strain h(t) at discrete time intervals �t = 1/f

s

, the spectral
density is only known with a frequency resolution of �f = f

s

/N , where N is the number of data points used to
measure S

n

(f). By putting f = k�t into eqn. 6 and grouping terms by units, we arrive at the expression
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where
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for the inspiral horizon distance in Mpc. Since it is convenient to work with the binary system’s component masses,
we have also replaced the chirp mass M with the reduced mass µ and the total mass M , where M = µ3/5M2/5.
Written this way, the inspiral horizon distance in Mpc is easily computed from the binary component masses in M�.

iLIGO  15Mpc 
eLIGO 20Mpc 
aLIGO 50Mpc 



¡  LIGO-Virgo only

From LIGO-G1201135-v4 



¡  LIGO-Virgo plus LIGO-India

From LIGO-G1201135-v4 



¡  Burst gravitational waves 
§  Supernovae, binary merger phase, etc  

Accurate waveforms unpredictable 
=> Find signals with an “unusual” amplitude 
=> Important to distinguish from non-stationary noises 

¡  Continuous waves 
§  Pulsars 

Sinusoidal signal with some modulations 
=> Longterm integration 
=> Important to distinguish from line noises 
(Remark: power line freq. US 60Hz, India 50Hz) 



¡  Stochastic gravitational wave background 
§  From early universe 

The waveforms are random 
=> Correlation analysis of the detector network 
=> The total GW flux can be estimated  
=> Or, skymap of the flux is obtained from radiometric 
analysis  

¡  In all cases, it is highly desirable to have  
the detectors to have comparable sensitivities 



¡  GWs ~ ripples of the spacetime 

¡  Not yet directly detected  
~ the effect is so small (h<10-21) 

¡  Michelson-type interferometers are used 

¡  GW detection is a precise length 
(=displacement) measurement! 

¡  GW effect is very small 



¡  Basically, the larger, the better. 
LIGO has two largest interferometers 
 in the world, and the third one will have  
very important role in GW astronomy  

¡  IFO consists of many components 
Optics / Mechanics / Electronics 
 and their combinations (e.g. Opto-Electronics) 

¡  Noises and signals are, in principle, 
indistinguishable. 
Noise reduction is essential 


