LIGO-G1401365-v1

LIGO-India Detector Master Class Introduction

Koji Arai – LIGO Laboratory / Caltech

Who is this guy!?

- Ph.D at Univ of Tokyo (1995-1999)
 - Design & build of TAMA300 double-pendulum suspensions
 - Interferometer length sensing for power recycled Fabry-Perot Michelson Interferometer
- Commissioning and science runs of TAMA300 interferometer (1999-2009)
- @LIGO Caltech (2009-)
 Output mode cleaner development eLIGO/aLIGO commissioning

LIGO-India Detector Master Class: Overview

Mission:

To convey technical knowledge necessary for building and operating the LIGO India detector, or similar interferometer, including prototypes

by going through:

- the common technologies in laser interferometer GW detectors
- Detailed description / discussion about the interferometer sensing & control

LIGO-India Detector Master Class: Overview

Lecture plan

DAY1 General overview of laser interferometer GW detectors Interferometer configurations

DAY2 Noises in GW detectors

DAY3 Control system & its modeling

DAY4 Interferometer length sensing and control Feedforward noise cancellation Quantum noise

DAY5 Higher-order laser modes

Interferometer GW detection

Gravitational wave

- General Relativity
 - Gravity = Spacetime curvature
 - Gravitational Wave = Wave of spacetime curvature
 GW
 - Generated by motion of massive objects
 - Propagates with speed of light
 - Cause quadrupole deformation of the spacetime

Gravitational wave

- What does the balls feel?
 - The balls are free mass (= free falling)
 - ...Geodesic lines

Interferometer GW detection

Michelson-type interferometers are used Differential change of the arm path lengths =>change interference condition Mirror Mirror **Beamsplitter** Interference Fringe Laser

Antenna pattern

Antenna pattern (at low frequencies)

FIG. 2 (color online). Interferometer antenna response for (+) polarization (left), (\times) polarization (middle), and unpolarized waves (right).

<u>Rev. Mod. Phys. 86 (2014) 121-151</u> <u>http://link.aps.org/doi/10.1103/RevModPhys.86.121</u> (<u>http://arxiv.org/abs/1305.5188</u>)

Amplitude of GWs

- The effect of GW is very small
- h ~ 10^{-23} => distance of 1m changes 10^{-23} m
- Corresponds to: change by ~0.01 angstrom (or 1pm) for distance between the sun and the earth

Size of interferometer GW detectors Mirror GW Detection = Length measurement The longer arms, the bigger the effect • GW works as strain = $dx = h_{GW} \times L_{arm}$ • Until cancellation of the signal happens in the arms Optimum arm length $4L_{arm} = \lambda_{GW} (= c / f_{GW})$ Mirror Mirror Laser $L_{arm} = 75 \text{km} \text{ (for } f_{GW} = 1 \text{kHz})$ Mirror **Photodetector** Laser Photodetector

Size of interferometer GW detectors

LIGO Observatories Hanford / Livingston 4km

Still shorter than the optimum length => Use optical cavity to increase life time of the photons in the arm

c.f. Virgo (FRA/ITA) 3km, KAGRA (JPN) 3km, GEO (GER/GBR) 600m

Components of the interferometer

Still simplified" LIGO Interferometer

Components of the interferometer

- 3 fundamentals of the GW detector
- Mechanics
- Optics
- Electronics

Components of the interferometer

Electronics

Mechanics

What can we do for the detection?

- An IFO produces a continuous signal stream in the GW channel
- The detector is fixed on the ground
 => can not be directed to a specific angle
- GWs and noises are, in principle, indistinguishable
 => Anything we detect is GW

Reduce noises!

Obs. distance is inv-proportional to noise level
 x10 better => x10 farther => x1000 more galaxies

Sensitivity and noise

Sensitivity (=noise level) of Enhanced LIGO

Laser shot noise Laser radiation pressure noise thermal noise seismic noise Laser intensity /frequency noise

electronics noise digitization noise angular control noise

aLIGO sensitivity

aLIGO sensitivity

Data Analysis

Compact Binary Coalescence => Chirp signal

NS-NS binaries

Accurate waveforms predictable (Post Newtonian approximation) => Template banks & Matched Filter analysis (amplitude & phase information)

BH-BH binaries

Similar waveforms, but more difficult to predict because of earlier merging

Mat]ched filtering analysis

Data Analysis

Binary range

Binary inspiral range

Chirp waveform PSD

$$\tilde{h}(f) = \frac{1}{D} \left(\frac{5\pi}{24c^3}\right)^{1/2} (G\mathcal{M})^{5/6} (\pi f)^{-7/6} e^{i\Psi(f;M)},$$

- ISCO freq (HF cut off freq) $f_{isco} = \frac{c^3}{6\sqrt{6}\pi GM},$
- Horizon range (Integrated SNR of 8)

$$D = \frac{1}{8} \left(\frac{5\pi}{24c^3} \right)^{1/2} (G\mathcal{M})^{5/6} \pi^{-7/6} \sqrt{4 \int_{f_{low}}^{f_{high}} \frac{f^{-7/3}}{S_n(f)} df},$$

 In the control room we use D/(2.26) taking all sky average

https://dcc.ligo.org/LIGO-To9oo499/public

iLIGO 15Mpc eLIGO 20Mpc aLIGO 50Mpc

Localization capability:

LIGO-Virgo only

Fairhurst 2011

Red crosses denote regions where the network has blind spots 10

Localization capability:

LIGO-Virgo plus LIGO-India

Fairhurst 2011

From LIGO-G1201135-v4

Data Analysis

Burst gravitational waves

Supernovae, binary merger phase, etc

Accurate waveforms unpredictable

- => Find signals with an "unusual" amplitude
- => Important to distinguish from **non-stationary noises**

Continuous waves

Pulsars

Sinusoidal signal with some modulations

- => Longterm integration
- => Important to distinguish from **line noises** (Remark: power line freq. US 60Hz, India 50Hz)

Data Analysis

Stochastic gravitational wave background

From early universe

- The waveforms are random
- => Correlation analysis of the detector network
- => The total GW flux can be estimated
- => Or, skymap of the flux is obtained from radiometric analysis

In all cases, it is highly desirable to have the detectors to have comparable sensitivities

Summary

- GWs ~ ripples of the spacetime
- Not yet directly detected
 ~ the effect is so small (h<10⁻²¹)
- Michelson-type interferometers are used
- GW detection is a **precise** length (=displacement) measurement!
- GW effect is very small

Summary

- Basically, the larger, the better.
 LIGO has two largest interferometers in the world, and the third one will have very important role in GW astronomy
- IFO consists of many components
 Optics / Mechanics / Electronics
 and their combinations (e.g. Opto-Electronics)
- Noises and signals are, in principle, indistinguishable.
 Noise reduction is essential