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3rd Generation GW Detectors

Potential  advantages  of  cryogenic  IFOs

early recognized since pioneering work by 

Kuroda and co-Workers  [K. Kuroda et al.,

Int. J. Mod. Phys. D08 (1999) 557].

Medium scale cryogenic interferometer

demonstrated (CLIO, 100m)  [T. Uchiyama

et al., J. Phys.: Conf. Ser. 32 (2006) 259]

KAGRA  [K. Somiya et al., CQG 29 (2012) 

124007]  and ET  [M. Punturo et al., CQG

27 194002] will be cryogenic.

Many  ideas  (e.g., He-II)  under discuss-

ion for a  cryo-LIGO  [Workshop on Next

Generation LIGO Detectors, Caltech, 2012,

see, e.g., LIGO-G120025] .



Cold Coatings aren’t Cool

Ti-doped  Tantala has lower losses compared   

to plain Tantala. Also at cryo temperatures.

[I. Martin et al., LIGO-G080313]

[I. Martin et al., CQG  25 (2008) 055005 ]

∝ ,

A cryogenic peak  (up to 10 x  loss angle increase)

in  the range  10 - 20 K  is observed  in many  coat-

ing materials,  consistent  with  (a  spectrum  of) 

thermally activated relaxation  processes, with

Both Silica (~	10x loss angle increase) and Ti-doped 

Tantala (~	4x loss angle increase)  suffer from this.



Mechanical loss measurements on multi-layer Titania-doped-Tantala/Silica coatings on 

Silicon  (annealed at 400 C∼ 600 C)  show a cryo-peak at  ∼ 30K [Granata et al., Opt. 

Lett. 38, 5268 (2013)].

Mechanical   loss measurements   on multi-layer  Tantala/Silica  coatings   on  Sapphire 

do  not show such peak, yielding almost temperature-independent losses [Yamamoto 

et al., PRD-74 022002 (2006); Hirose et al., LIGO-P1400107] .

Reasons behind these discrepancies yet to be understood .

The  Cryo-Peak Issue – Multilayers
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Hafnia

“ Initial results of the mechanical loss of HfO
2

do  not   show a large peak  in  dissipation at 

T ~	20K in contrast to Ta
2
O

5
”

“ Broad peaks do appear to occur at ~50K and 

~200K – could this indicate a different dissip-

ation mechanism? ”

[E. Chalkley et al., LIGO-G080314]

Hafnia coatings crystallize  upon annealing.

“Doping of the hafnia coatings with silica has been 

suggested as a viable method for preventing the  

crystallization of the hafnia coatings, possibly imp-

roving their mechanical loss and optical  properties.”

[M. Abernathy et al., CQG  28(2011) 195017 ]



a-Titania

Results in Scott and MacCrone, Rev. 

Sci. Instr.  39 (1968) 821 obtained

from  a  cantilever - like based ring-

down measurement setup suggest 

that  (amorphous)  Titania may  be 

almost  exempt  from  a  cryogenic  

mechanical loss peak.

Fresh measurements needed !



a-Titania, contd.

Mechanical  loss of  (as deposited)  a-TiO2 on  silicon has been measured at Glasgow

[Preliminary data, courtesy Iain Martin & Peter Murray, 2014] .

…almost no cryopeak found
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Si-Doping Contrasts Crystallization

LLLong since known result:



Si-Doped Titania

Almost as good as Titania dopd Tantala, but lower index.



No Cryo Peak in Si-Doped Hafnia



A Different Option: Thin(ner) Films… 

thin – layer  Titania

Thinn(er) films crystallize  at high(er) temperatures



nm Layered Hafnia-Alumina Composites

Cryogenic behaviour of nm-layered 

Hafnia-Alumina composites unknown
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Sub-wavelength (nm) Layered Composites
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SWL composite properties depend only on

the constituents’  properties and  the thick-

ness ratio  ��,
�
/��,
�




nm-Layered Composite Design

Equivalent TiO
2
/SiO

2
subwavelength doublet

based, QWL thick composites  with neff =2.09

For  given  	��,	�	,	 prescribing   the  composite  

index  		����		determines   uniquely  the thick-

ness ratio of  the  low / high  index materials

in it  (from Drude’s equation),

��
��

�
��

� � ����
�

����
� � ��

�

Prescribing the optical thickness  z of  the  

composite  material (in units  of  the local 

wavelength),  and   the minimum thickness 

of  the nano-layers)  yields   all equivalent

slab  design  parameters ��, ��, ���,  from

		� �� � �� � �������
�

…

�� ��

N nano-doublets

≡

The simplest geometry uses cascaded nano-

doublets, and is thus  specified by 	��, ��, ���.  



• Barta’s extension of Bruggemann formulas to viscoelastic properties  [S. Barta, J. Appl.

Phys. 75 (1994) 3258]

Define : ,

Co-sputtered Composites (EMT Model)

Mesoscopic (Effective Medium Theory)  approach [I. Pinto et al.,  LIGO-G100372, 

LIGO-G1100937] – see [D. Aspnes, Am. J.  Phys, 50  (1982) 704] for foundations.

��
��� 	 ��

���� � �� 	 ���� � �� 	 ���	
�� 	 ���

���� � �� 	 ����

• Bruggemann dielectric mixture formula [D.A. Bruggeman Ann. Phys. 24 (1935) 636;

C.C. Lee, C.J. Tang, Appl. Opt., 45 (2006) 9125]



Co-sputtered vs Nanolayered, I – Optical
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� is Bruggemann shape-factor  (1/3 for sph. incl.)
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Nanolayered

Cosputtered

SiO2/TiO2 Composites
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Material noisyness embodied in 

coefficients

(Silica substrate assumed)

Co-sputtered vs Nanolayered, II - Mechanical

�� ≅
 �
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to be used in



Co-sputtered vs Nanolayered, III

Nanolayered

Cosputtered

SiO2/TiO2 Composites

Nanolayered SiO2/TiO2  composites 

are less  noisy , compared to co-sput-

tered SiO2/TiO2 composites  having 

the same refraction index



Technological Challenges ?

Even relatively large thickness` errors in the individual

low/high index  layer  thicknesses are irrelevant,  pro-

vided each  layer  is   sub-wavelength   and   the  total  

thickness  ratio  has the design value.           

Other ?
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Good Old Technologies I: Rugates

Rugates are widely used in coating de-

signs.  They offer,  e.g.,  the  simplest 

option for  N-chroic operation,  ob-

tained from  the superposition  of  N

sinusoidal index modulations, viz:

Rugate dichroic mirror coating

In practice,  one uses staircase  approximations for the sine functions in (1), where each 

sub-wavelength-thick layer can be obtained  by sandwiching two  nm-thick  layers  made 

of  a  low (L) and high (H)  index material,  such that

��
�� � ��� 	 ��

�� 	 ���
[W. H. Southwell, Appl.  Opt. 24 (1985) 457-460]

� # � �� � $Δ��&'�
2"#
Ξ�

�

���

(1)



Good Old Technologies II: X-Ray Mirrors

Control  of  stress,  crystallite  size, and  

roughness [D.L.  Windt, Proc. SPIE (2007) 

vol 6688]

● Ion assisted (modulated) magnetron sput-

tering [N. Ghafoor et al., Thin Sol. Films  516 

(2008) 982]

See also [R. DeSalvo, LIGO-G080106] for a survey.

Interference mirrors consisting of hund-

reds/thousands of  nm scale  layers, with

sub - nm precision [see,  e.g.,  Proc . 10th

PXRMS  Conf.  (2008)] , using

● Interleaved nm-scale “buffering” layers 

to prevent crystallization & maintain flat-

ness [E. Gullikson, Proc. 8th PXRMS  (2006)]
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NTHU Deposition Facility

Kaufman gun & neutralizer Sputter target and rotator Twin exch. target holder

Kaufman-type ion beam sputterer

in Class 100 clean compartment 

within Class 10000 clean room.
[S. Chao et al,  LIGO-G1101083, G1200489,

G1300921] ]



NTHU Deposition Facility

● Several witness samples are deposited together with a few 

cantilevers in each run and used for structural/optical characterization.



Deposition Rate / Calibration
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nm-Layered Prototypes

Morphology of witness samples

investigated using TEM and 

electron diffraction.

Interface profiles characterized

via energy-dispersive X-ray dif-

fraction (EDXRD)

[S. Chao et al., LIGO-G1200489]



1st Generation nm-Layered Prototypes

Total 

thickness 

(nm)

Averaged thickness of TiO
2

and SiO
2

layer(nm)

TiO2 SiO2

single TiO2 121.9 121.9 0

3 layer 119.8 40.9 40.7

5 layer 119.2 26.2 20.3

7 layer 120.0 20.6 12.5

11 layer 119.3 13.7 7.4

15 layer 112.4 9.8 4.8

19 layer 112.6 7.4 4.3

All prototypes QWL thick @ 1064nm, all with n = 2.065
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NTHU Annealing Facility 

annealing in atmosphere

[S. Chao et al., LIGO-G1300921]

Model : YF-4

Company : YSC

Heater ramp-up



NTHU Cantilever Setup

[S. Chao, LIGO-G1200489 ]



Clamp/Exciter Design

[J. Wang, MA Thesis, NTHU, 2012]



Cantilever Design

Cantilever fabricated from (100, undoped)

4” silicon wafer by KOH wet etching.

[S. Chao, LIGO-G1200849]

[J. Wang, MA Thesis, NTHU, 2012]



Cantilever Production

[S. Chao, LIGO-G1200849]

2-side polished

wafer – use non

KOH etched face 

for coating dep.

(collab. W. Taiwan National Nanotech Device Lab (NDL)



Ringdown Error Analysis



Digression : Fitting Residuals

Typical loss angle fitting

residuals, TNI measure-

ments

[Villar et al., PRD 81 (2010) ]

Typical loss angle fitting  residual,  

clamped  cantilever  based  ring-

down measurement

[data courtesy N. Morgado (2008)]

Confidence intervals must be robustly estimated  in the  non Gaussiann case.



XRD Spectra after Annealing

[S. Chao et al., LIGO-P1400122; 

Optics Express (2014) in print]

At 300C the Anatase peak gets smaller 

and broader as the nanolayer thickness 

decreases (and the nanolayer number 

Increases), signaling crystallization 

frustation, until it disappears for N=19.
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NTHU XRD Facility

Model : X'Pert Pro (MRD)

Company : PANalytical

X-ray source：Cu (Kα；λ= 0.154 nm)

Generator voltage : 45kV

Tube current : 40mA

Detector：Proportional Counter

Beam size：12 mm × 0.4 mm

Sample size：10mm X 10mm

Incidence angle(θ) : 0.5 °

Scan range (2θ): 20 ° ~65 °

Scan step size : 0.02 °

Time per step : 0.5s



Crystallite Size vs Nanolayer Thickness

[S. Chao et al., LIGO-G1300921]

Crystallite size decreases almost linearly with thickness

down to  thickness ≈ 7nm  (and hopefully below)

(Scherrer’s shape factor k ≈ 1)

Sankur-Gunning results  confirmed 



TEM Imagery Before/After Annealing
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TEM  shows that no significant across-interface diffusion occurs during annealing



Crystallization After Annealing 

Before 

annealing
225 ℃ 24hr 250 ℃ 24hr 300 ℃ 24hr 350 ℃ 24hr

Anneal

Condition

Sample

Single  TiO
2

3 layer

5 layer

7 layer

11 layer

15 layer

19 layer

No

No

No (explained)

Yes
FWHM=0.37 °

- -

- -

- -

- -

- -

- -No

No

No

No

No

No

No

No

No

No

No

No No

Yes
FWHM=0.37 °

Yes
FWHM=0.40 °

Yes
FWHM=0.50 °

Yes
FWHM=0.53 °

Yes
FWHM=0.81 °

Yes
FWHM=0.37 °

Yes
FWHM=0.35 °

Yes
FWHM=0.44 °

Yes
FWHM=0.50 °

Yes
FWHM=0.65 °

Yes
FWHM=0.93 °

Yes
FWHM=1.32 °



AFM Imagery
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AFM scans of top (TiO
2
) layer surface

.



Spatial spectra of AFM  scans. Tile sidelength is (5.14 *)-1
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AFM Spectra



Loss Angle Before/After Annealing

[preliminary results ,  S. Chao et al., LIGO-G1401055]

Different bars correspond

to  different  re-clampings.

Lowest-average bar yields

most trustable value.

Multiple  measurements 

taken for each re-clamp-

ing, yielding error bars.

A.D. Tann=250C Tann=300C

Bending mode # 1

A.D.



Loss Angle Before/After Annealing
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A.D. Tann=250C Tann=300C

Bending mode # 1
Uncoated substrate loss

angle shows no significant

change after annealing.

� Substrate

[S. Chao et al., LIGO-G1401055]



Loss Angle of nm-Layered Material

���� �

�+�

3
���+��� ����
� 	 ����� 

[Pierro et al., LIGO-T060173]

Young modulus of substrate (169 GPa, Silicon 100)

thickness of substrate (92-1 .)

measured loss angle of 

naked cantilever (substrate)

measured loss angle 

of coated cantilever

Young modulus (Voigt)

of nanolayered composite


��� � /�
� � �1 	 /��
�
thickness of nanolayered

composite (112.5 nm, for

the 19-layer prototypes)

Volume (thickness) 

fractions  of composite 

ingredients

(0.654 for TiO2, for the 

19-layers prototypes)

Young moduli of  

composite ingredients

(165Gpa for TiO2, 72 Gpa for SiO2)



Loss Angle of a-Titania in nano-Composite
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… Use fiducial value of Silica loss angle (5 10-5)  to  retrieve loss angle 

of  a-Titania in the nm-layered composite ….   

Yields loss angle values  ~	10 -- 4  for  a-TiO
2  

, consistent with  [Scott

and MacCrone, Rev. Sci. Instr. 39 (1968) 821].



Loss Angle Before/After Annealing

Note: the effective refractive index of our nm-layered composite is (Drude formula):

���� � /���� � �1 	 /����� 0 2.063		�@1064�6�

…yielding for our 19-layers nm-layered composite the following estimates for

the loss angle as a function of the annealing temperature (with typical 10%

uncertainties) 

� � 1.04	10
!	(as deposited)

� � 4.3	10
" (after annealing 24h @ 250 C)

� � 1.3	10
" (after annealing 24h @ 300 C)

…comparable to or better than Ti-doped Tantala !
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Next Steps

Make thinner layers (and hence more layers) to allow for higher annealing

temperatures, and measure loss angle. 

Practical thickness limit 0 7�8,  may allow  T
ann

0 9::	;;
Better (higher Q) substrates may be needed (Norcada’s ?);

Available evidence suggests that (many) interfaces are irrelevant as far as mech-

anical losses are concerned. But may be relevant for optical diffusion.  

Need to characterize optical scattering  of nanolayered prototypes;

This task is part of the INFN-AdCOAT proj. [Pinto et al.,  LIGO-G1400810].

Investigate behaviour of nm-layered composites at cryogenic temperatures

Cryogenic ringdown measurement facility at NTHU almost completed;

This task is also part of the INFN adCOAT project.



“Investigating, characterizing  and comparing  the properties (morpho-

logical, structural, optical and viscoelastic)  of  Silica::Titania and  Si-

lica::Hafnia mixtures,  both nm-layered and co-sputtered,  both at

ambient and cryogenic temperatures.”

“Setting up a  coherent interaction between different Italian Groups

working on diverse aspects of  coating science and technology, with

Specific reference to Interferometric Detectors of gravitational waves.”

The INFN AdCOAT Project (2014-15)

Missions:



Genoa WG - Coating morphology analysis [Prato et al., J. Phys. Conf. Ser., 

228 (2010) 012020];  optical  properties characterization [Prato et

Al., Thin Solid Films 519 (2011) 2877]

Perugia WG – Dissipation mechanism modeling in glasses [Travasso et al., 

Materials  Science  Eng.  A521 (2009) 268; Euro  Physics  Lett. 80 (2007) 

50008] ; viscoelastic  parameters measurement techniques [P. Amico et

al., J. Phys.  Conf. Ser., 32  (2006) 413]

Rome “Tor Vergata” WG - Cryogenic subsystems [Coccia, Physica B 280 

(2000) 52];  development of gentle nodal suspension setup [Cesarini et 

al., Rev. Sci. Instr. 80 (2009) 1.3124800; CQG 27 (2010) 084031].

Sannio WG - Coating design [Villar et al., Phys. Rev.D81 (2010) 122001],  

EMT modeling of  glassy oxide mixtures  [Pinto et al., LIGO-G1100372], 

nm-layered composite modeling and design [Pinto et al., LIGO-G 1100586].

AdCOAT – WG Background/Tasks



Genoa   WG - HR-TEM  (JEOL JEM 2010 + ac-

cessories );  SEM (Zeiss EVO 40 HV  + acces-

sories); FE-SEM (Zeiss SUPRA 40 VP + acces-

sories); SPM (Veeco Multimode Picoforce + 

accessories); AFM (Dimension 3000 +acces-

sories); XRD (Philips XPERT MPD PRO); 2 x 

OSEs  (Woollam M-2000 and VASE); some

cryogenic facilities. 

(courtesy M. Canepa, INFN Ge)

AdCOAT – Experimental Facilities



AdCOAT – Experimental Facilities, contd.

Perugia   WG - Two cryostats (resp. nitrogen/he-

lium, and pulse-tube). Three different setups for 

mechanical Q measurement at ambient tempe-

rature; optical lever based setup; frequency sta-

bilized Michelson interferometer. FE - SEM  for  

film surface quality analysis down to 2 nm. 

(courtesy H. Vocca, INFN Pg)

3 optical systems (Michel-

son IFO,  FP cavity and sha-

dow-meter) with stabilized 

Laser for measuring mech-

anical modes of membra-

nes and mirrors,  at ambi-

ent and cryogenic tempe-

ratures. 



AdCOAT – Experimental Facilities, contd.

Rome   WG - Gentle nodal suspension  (GeNS) 

based  setups for Q measurement at ambient 

and (soon) cryogenic temperatures.

Some systems  for thermal  and laser anneal-

ing (CO2 laser) 

(courtesy E. Cesarini, INFN Rm-TV)

• l-He cooling and radiation shield

• optical lever readout

• alternative (capacitive) readout

• electrostatic (comb) actuators

• cryogenic positioners

• Laser assisted centering

• Q independent of suspension point

• coating preserved

• butterfly-mode matched exciters

• lowest loss angle measured so far

(fused Silica) : φ=4.8 10-8



AdCOAT – Experimental Facilities, contd.

Sannio WG – Dual head pulse tube cryocooler

(Sumitomo  SRP - 052A - W71 D) . Two  NVIDIA 

“Fermi”  C2070 GPU based WS. 

(courtesy  M. Principe, UniSannio and INFN)

In house developed SW for coating 

simulation (thickness  optimization,  

mixture  analysis  and  design,  nm-

layered composites analysis and de-

sign, statistical treatment of measu-

rement residuals and robust estima-

tors).



NTHU Cantilever Setup Upgrade (2014-15)

[S. Chao, LIGO-G1400806]
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Conclusions

So far, only  doped Tantala and  thickness -optimization  progressed to the pro-

duction stage  (and  became part of the AdLIGO baseline design).

Most of the above (clever) ideas are still facing  major  technological challenges .

Will nm-layered composites be a viable route ?  
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