# Advanced LIGO Seismic Isolation and Control

J. Kissel, B. Shapiro, A. Pele, S. Biscans, for the LIGO SEI, SUS, ISC Teams

G1401207 - Pisa - 13 October 2014

# Part 1: Overview of aLIGO isolation systems

J. Kissel, B. Shapiro, A. Pele, S. Biscans, for the LIGO SEI, SUS, ISC Teams

# **Recent Livingston Noise Floor**



Sept 29, 2014. https://alog.ligo-la.caltech.edu/aLOG/uploads/4853\_20140929051255\_DARM\_09\_29.png

## aLIGO (Simplified) Interferometer Layout



4

### aLIGO Seismic Isolation





### Hybrid Systems Advanced LIGO - The Design



- 7 Stages of Isolation
  - Hydraulic Preisolation
  - Blade spring and wire flexures
  - Monolithic Final Stage
- 6 DOF sensing on stages 1 4, 3 DOF on 5 6
  - Inertial and displacement on stages 1-3
  - Displacement only on stages 4 6
- 6 DOF DC 1kHz actuation on Stages 1 4, 3 DOF on 5
  7
- (6+6+6+[3\*6+4]) = 40 out of 42 Trans./Rot. resonant modes sensed and controlled
- Many-control-loop system
  - Sensor blending, Feed back, Feed forward, Sensor Correction, Heirarchical control
- Versatile 800 kg payload
- Stage 1 3 "Performance limited by sensor noise,"
   Stage 4 7 "Performance limited by direct transmission of platform motion"

### Hybrid Systems The Comparison

#### All isolation systems are hybrid.

• Not "Passive" vs. "Active"

Every isolation system uses a combination of "passive" pendula as well as "active" sensors and actuators for some degrees of freedom

• Not "ISI" or "SA" vs. "Payload

Controls and mechanics don't care how you've divided up assembly, all parts are connected and affect all dynamics

• Not "Soft" vs. "Stiff"

Instead "Soft" vs. "Very Soft"

Every isolation system has some DOFs low frequency resonant modes and some with high frequency resonant modes. There \*is\* a difference between a 30 mHz system and a 400 mHz isolation system

• Not "Cheap" vs. "Expensive"

Each system has a whole bunch of precision engineered metal, some fancy sensors, digital control system, man-hours ... it's all a wash in the end





#### Advanced LIGO A single output chamber is complicated! HAM5



#### SEI Sensors and Their Noise

DC

1

Hz



"Low" Frequency IPS Kaman's Inductive Position Sensors Used On: HEPIs Used For: ≤ 0.5 Hz Control, Static Alignment Used 'cause: Reasonable Noise. Long Range

#### STS2

Strekheisen's STS-2 Used On: HEPIs Used For:  $0.01 < f < 1H_7$  Control Used 'cause: Best in the 'Biz below 1 Hz, Triaxial



#### **GS13**

GeoTech's GS-13 Used On: HAM-ISIs and BSC-ISIs Used For:  $\geq 0.5$  Hz Control Used 'cause: awesome noise above 1Hz, no locking mechanism -> podded 800 Hz "High" Frequency

MicroSense's Capacitive **Displacement Sensors** Used On: HAM-ISIs and BSC-ISIs Used For: ≤ 0.5 Hz Control, Static Alignment Used 'cause: Good Noise, UHV compatible 10 mHz

**CPS** 

#### T240

Nanometric's Trillium 240 Used On: BSC-ISIs Used For:  $0.01 \le f \le 1$ Hz Control Used 'cause: Like STS-2s, Triaxial, no locking mechasim -> podded



#### L4C

Sercel's L4-C Used On: All Systems Used For:  $\geq 0.5$  Hz Control Used 'cause: Good Noise, Cheap,



G1100431

#### 100 10<sup>-5</sup> -6 Displacement Noise (m/rtHz) $10^{-0}$ 10<sup>-10</sup> $10^{-9}$ 10<sup>-11</sup> $10^{-11}$ GND (50th Percentile) Raw CPS Noise Raw IPS Noise Raw GS13 Noise 10<sup>-12</sup> Raw L4C Noise Raw T240 Noise - Raw STS Noise 10<sup>-13</sup> SRCL HAM ISI Req PRCL HAM ISI Req BSC ISI Req 10<sup>-14</sup> 10<sup>-2</sup> 10<sup>0</sup> **10**<sup>1</sup> $10^{-1}$ 10Frequency (Hz)

**SEI Sensors and Their Noise** 

G1100431

J. Kissel, Apr 7 2011

## Where stuff is on HEPI





IPS Position Sensor



*f* = ~1 Hz

Inertial

Sensor



ACT Hydraulic Actuators



G1100431

J. Kissel, Apr 7 2011

### Where stuff is on a HAM-ISI



LIGO-G0901062



# HAM chamber (auxiliary optics) configuration and performance







# BSC chamber (core optics) configuration and performance









Test mass suspension on 2-stage in-vacuum isolation table

#### Auxiliary optics on 1-stage in-vacuum isolation table







# Quadruple Suspension (Quad)





#### 24 Aug 2014 - Stanford - G1400964

#### Purpose

- Input Test Mass (ITM, TCP)
- End Test Mass (ETM, ERM) Location
- End Test Masses, Input Test Masses

#### Control

- Local damping at MO, RO
- Global LSC & ASC at all 4

#### Sensors/Actuators

BOSEMs at MO, RO, L1

AOSEMs at L2

- Optical levers and interf. sigs. at L3
- Electrostatic drive (ESD) at L3 Documentation
- Final design review T1000286
- Controls arrang. E1000617





## HAM Small Triple Suspension (HSTS)

SD

#### Purpose

- PRM, PR2, SRM, SR2
- MC1, MC2, MC3

#### Location

Auxiliary Chambers

#### Control

- Local damping at M1
- Global LSC & ASC at all 3

#### Sensors/Actuators



- AOSEMs at M2 and M3
- Optical levers and interferometric signals on M3

Naming: L1:SUS-PRM\_M1...

#### Documentation

- Final design review T0900435
- Controls arrangement E1100109





## **Optical Sensor ElectroMagnet (OSEM)**







Birmingham OSEM (BOSEM)



BOSEM Schematic 24 Aug 2014 - Stanford - G1400964

Advanced LIGO OSEM (AOSEM)

Magnet Types (M0900034) • BOSEM – 10 X 10 mm, NdFeB , SmCo

- 10 X 5 mm, NdFeB, SmCo
- AOSEM 2 X 3 mm, SmCo
  - 2 X 6 mm, SmCo
  - 2 X 0.5 mm, SmCo



### **Optical Levers**

#### Invaluable local sensor of the test masses



### **Predicted Performance**



# Control of Seismic Isolation Systems





# Suspension damping feedback



<sup>24</sup> Aug 2014 - Stanford - G1400964

### **Suspension Damping Feedback**









## Suspension cavity control









# Suspension angular control

Reaction Main (test) **Optical levers provide** Chain Chain additional damping feedback for lock acquisition. Wavefront sensors (WFS) provide low noise alignment feedback during observational runs.

Alignment

control filters

Optical levers or wavefront sensors





### damping



#### **HEPI** Control



# Stage 1 of 1-stage of in-vacuum isolation table (HAM-ISI)



Adapted from P1200010

# Stage 1 of 2-stage of in-vacuum isolation table (BSC-ISI)



# Stage 2 of 2-stage of in-vacuum isolation table (BSC-ISI)





#### Sensor Blending and Blend Switching

- Can't use inertial sensors at DC (tilt, magnetic coupling, etc.)  $\rightarrow$  Use position sensors
- Blend position and inertial sensors to create a "super sensor"
- Several blend combinations are implemented and can easily be switched via real-time blend switching





# BackUps

### **Conclusions**

#### **Open Questions**

 Is the temperature susceptibility of the lowest frequency modes of these hybrid systems a problem?

• aLIGO's low-stress, minimal force design claims less non-gaussian noise. Is it true?

• aLIGO's "sensors everywhere" policy is supposed to aid in identifying unknown unknowns. Will it help?

• Can we read out our sensors / use our actuators [[CABLES]] without spoiling the mechanical isolation?

• Can any of these hybrid systems – the \*entire\* system, not just the test masses – meet their claimed fundamental noise sources (ground transmission and/or sensor noise)

- Cables shorting isolation
- Heat links shorting isolation
- Reinjection of Sensor Noise
- Thermal Noise
- Magnetic Coupling Noise

### Conclusions Open Questions

• Integration of large number of platforms together using inteferometric signals ...

- How to encorporate new / better sensors? e.g. ground rotation sensors
- Can we use computers to "simulate" the mechanical dynamics in real-time?
- Operations during sensor failure

 How to create / encorporate a global array of sensors for Newtonian Noise Subraction?

# List of Gotchas / Tricks

- Capacitive position sensor clock signals beating against each other – causing ~0.3 [Hz] comb
- QUAD Bounce/Roll Mode causing saturations
- Violin Mode Damping
- ISI modes seen in SUS TFs and vice-versa
- Lock acquisition kicks influencing isolation of upper stages
- HEPI mechanical tilt-horizontal ISI coupling (which first drove us to send sensor correction to the ISIs)
- ESD Charging / Electronics Noise
- HEPI Cross-beam Bending Modes
- Magnetic fields from ISI Z actuators cause ISI RZ motion
- Increase our SUS coil drive range for lock-acquisition





### Resources on SUS control techniques

#### • Damping

- Loop shaping and modal damping P1200009
   <a href="http://scitation.aip.org/content/aip/journal/rsi/83/4/10.1063/1.4704459?ver=pdfcov">http://scitation.aip.org/content/aip/journal/rsi/83/4/10.1063/1.4704459?ver=pdfcov</a>
- Modal damping P1200057
- Global damping P1400085, G1200774
- Cavity control (aka hierarchical control)
  - G1200632
  - T1000242
  - Using a blended actuator technique, using experience from the SEI group's sensor blending: G1200692

### **Sensor Noise**



Shadow Sensor aLIGO SUS Lower





aLIGO Pre-isolator Stage aLIGO Stage 0 & 1 ISIs AEI-SAS Vert. Witness



aLIGO Pre-isolator Stage



(Watt Linkage)

#### Sensor Noise Inertial Sensors



aLIGO

Stage 1 & 2 ISIs

## **SEI** Sensors and Their Noise



IPS Kaman's Inductive Position Sensors Used On: HEPIs Used For: ≤ 0.5 Hz Control, Static Alignment Used 'cause: Reasonable Noise. Long Range

#### STS2

Strekheisen's STS-2 Used On: HEPIs Used For:  $0.01 < f < 1H_7$  Control Used 'cause: Best in the 'Biz below 1 Hz, Triaxial



#### **GS13**

GeoTech's GS-13 Used On: HAM-ISIs and BSC-ISIs Used For:  $\geq 0.5$  Hz Control Used 'cause: awesome noise above 1Hz, no locking mechanism -> podded 800 Hz "High" Frequency

"Low" Frequency DC

**CPS** 

MicroSense's Capacitive **Displacement Sensors** Used On: HAM-ISIs and BSC-ISIs Used For: ≤ 0.5 Hz Control, Static Alignment Used 'cause: Good Noise, UHV compatible 10 mHz

#### T240

Nanometric's Trillium 240 Used On: BSC-ISIs Used For:  $0.01 \le f \le 1$ Hz Control Used 'cause: Like STS-2s, Triaxial, no locking mechasim -> podded



Hz

1

#### L4C

Sercel's L4-C Used On: All Systems Used For:  $\geq 0.5$  Hz Control Used 'cause: Good Noise, Cheap,



G1100431





### BSCs – core optics



hydraulic external preactive isolation isolator (HEPI) (one platform (2 stages stage of isolation) of isolation)

quadruple pendulum (four stages of isolation) with 24 Aug 2014 - Stanford - G1400964



24 Aug 2014 - Stanford - G1400964

### Predicted Advanced LIGO Sensitivity



