

LIGO SCIENTIFIC COLLABORATION

| Technical Note | LIGO-T1400585-v1 |
| :---: | :---: | | September 3rd, |
| :---: |
| 2014 |$|$| Matrix calculations for the angular |
| :---: | :---: |
| control of H1 OMC |
| Koji Arai, Daniel Hoak, Nicolas Smith-Lefebvre |

Distribution of this document:
LIGO Scientific Collaboration

California Institute of Technology LIGO Project, MS 100-36

Pasadena, CA 91125
Phone (626) 395-2129
Fax (626) 304-9834
E-mail: info@ligo.caltech.edu

LIGO Hanford Observatory
Route 10, Mile Marker 2
Richland, WA 99352
Phone (509) 372-8106
Fax (509) 372-8137
E-mail: info@ligo.caltech.edu

Massachusetts Institute of Technology LIGO Project, Room NW22-295

Cambridge, MA 02139
Phone (617) 253-4824
Fax (617) 253-7014
E-mail: info@ligo.mit.edu

19100 LIGO Lane
Livingston, LA 70754
Phone (225) 686-3100
Fax (225) 686-7189
E-mail: info@ligo.caltech.edu

```
http://www.ligo.org/
```


1 Introduction

This document describes Matrix calculations for the OMC angular control. The description is so far limited to the QPD alignment servo for H1 OMC. ${ }^{1}$

2 Transfer function measurement

The ISC alignment inputs of OM1/2/3 were excited at 3.9 Hz and 2.9 Hz for Pitch and Yaw, respectively ${ }^{2}$. For the excitations, LOCK filters in the suspension model were used. The ALIGNDRIVE matrix was already filled so that the pitch and yaw actuations are diagonalized ${ }^{3}$. The spot motion was read by QPDA and QPDB. Note that the QPD X/Y signals are normalized by the sum signal so they are supposed to span from -1 to +1 . Measured transfer functions are

$$
\left.\begin{array}{rl}
\left(\begin{array}{c}
\text { H1:OMC-ASC_QPD_A_PIT_OUT } \\
\text { H1:OMC-ASC_QPD_B_PIT_OUT }
\end{array}\right.
\end{array}\right)=\left(\begin{array}{lll}
T_{\text {OM1P_QAP }} & T_{\text {OM2P_QAP }} & T_{\text {OM3P_QAP }} \\
T_{\text {OM1P_QBP }} & T_{\text {OM2P_QBP }} & T_{\text {OM3P_QBP }}
\end{array}\right)\left(\begin{array}{l}
\text { H1:SUS-OM1_M1_LOCK_P_IN1 } \\
\text { H1:SUS-OM2_M1_LOCK_P_IN1 } \\
\text { H1:SUS-OM3_M1_LOCK_P_IN1 }
\end{array}\right), ~\left(\begin{array}{lll}
-1.05 \times 10^{-3} & -1.64 \times 10^{-3} & -6.24 \times 10^{-4} \tag{4}\\
-6.38 \times 10^{-4} & -1.86 \times 10^{-3} & -9.55 \times 10^{-4}
\end{array}\right)\left(\begin{array}{l}
\text { H1:SUSOM1_M1_LOCK_P_IN1 } \\
\text { H1:SUSOM2_M1_LOCK_P_IN1 } \\
\text { H1:SUSOM3_M1_LOCK_P_IN1 }
\end{array}\right) .
$$

Here we define the combined matrix \mathcal{T} :

$$
\mathcal{T} \equiv\left(\begin{array}{cccccc}
T_{\text {OM1P_QAP }} & T_{\text {OM2P_QAP }} & T_{\text {OM3P_QAP }} & 0 & 0 & 0 \tag{5}\\
T_{\text {OM1P_QBP }} & T_{\text {OM2P_QBP }} & T_{\text {OM3P_QBP }} & 0 & 0 & 0 \\
0 & 0 & 0 & T_{\text {OM1Y_QAY }} & T_{\text {OM2Y_QAY }} & T_{\text {OM3Y_QAY }} \\
0 & 0 & 0 & T_{\text {OM1Y_QBY }} & T_{\mathrm{OM} 2 \mathrm{Y} _ \text {QBY }} & T_{\text {OM3Y_QBY }}
\end{array}\right)
$$

3 Suspension calibration

The measured transfer functions contain transfer function of the suspensions. Here we convert the transfer function to the DC response of the sensors.

The transfer function from the LOCK filters to the inputs of the damping filters are supposed to be calibrated to show the suspension responses in the unit of $\mu \mathrm{rad}$. The measurement is shown in Figure 1.

Here is the summary of the measurement:

[^0]

Figure 1: Transfer functions for OM suspension calibrations.

DC response:
(unit: [$\mu \mathrm{rad} /$ count $]$)

- $R_{\text {OM1_PitchDC }}=0.890$
- $R_{\text {OM2_PitchDC }}=1.137$
- $R_{\text {OM3_PitchDC }}=1.087$
- $R_{\text {OM1_YawDC }}=0.936$
- $R_{\text {OM2_YawDC }}=1.331$
- $R_{\text {OM3_YawDC }}=0.962$
3.9 Hz (Pitch) or 2.9 Hz (Yaw) response:
(unit: [$\mu \mathrm{rad} /$ count $]$)
- $R_{\text {OM1_Pitch3.9Hz }}=-0.249$
- $R_{\mathrm{OM} 2 \text { _Pitch3.9Hz }}=-0.261$
- $R_{\text {OM3_Pitch3 } 3.9 \mathrm{~Hz}}=-0.283$
- $R_{\mathrm{OM} 1-\mathrm{Yaw} 2.9 \mathrm{~Hz}}=-0.446$
- $R_{\text {OM2_Yaw2.9Hz }}=-0.481$
- $R_{\text {OM3_Yaw2.9Hz }}=-0.450$

Define a calibration matrix \mathcal{C} as

$$
\begin{align*}
& =\left(\begin{array}{cccccc}
-3.57 & 0 & 0 & 0 & 0 & 0 \\
0 & -4.36 & 0 & 0 & 0 & 0 \\
0 & 0 & -3.84 & 0 & 0 & 0 \\
0 & 0 & 0 & -2.10 & 0 & 0 \\
0 & 0 & 0 & 0 & -2.77 & 0 \\
0 & 0 & 0 & 0 & 0 & -2.14
\end{array}\right) \tag{6}
\end{align*}
$$

Then, a matrix product $\mathcal{T} . \mathcal{C}$ gives us expected response of the QPDs with regard to DC actuations.

4 Spot sizes on QPDs

Since OM3 is a flat mirror, it is straight forward to use it as a beam scanner to infer the beam size on the QPDs.

When the QPD signals are normalized by the sum, the pitch and yaw output signals becomes proportional to the spot displacement normalized by the spot size, as derived here.

A normalized intensity distribution $I(x)$ with the spot displacement and the spot radius of δ and w is expressed as

$$
\begin{equation*}
I(x)=\sqrt{\frac{2}{\pi w^{2}}} e^{-2(x-\delta)^{2} / w^{2}} \tag{8}
\end{equation*}
$$

This gives us the QPD signal $s(\delta)$ as

$$
\begin{align*}
s(\delta) & \equiv \int_{0}^{\infty} I(x) \mathrm{d} x-\int_{-\infty}^{0} I(x) \mathrm{d} x \tag{9}\\
& =\operatorname{Erf}\left(\frac{\sqrt{2} \delta}{w}\right) \tag{10}
\end{align*}
$$

where w is the beam radius on the QPD. This gives us the linear response of the following:

$$
\begin{equation*}
\left.\frac{\mathrm{d} s}{\mathrm{~d} \delta}\right|_{\delta=0}=\sqrt{\frac{8}{\pi}} \frac{1}{w} \tag{11}
\end{equation*}
$$

Therefore, the QPD signals upon OM3 actuation can be expressed as

$$
\begin{align*}
& T_{\mathrm{OM} 3 \mathrm{P} _\mathrm{QAP}}=\sqrt{\frac{8}{\pi}} \frac{1}{w_{\mathrm{AV}}} \cdot 2 L_{\mathrm{QPDA}} R_{\mathrm{OM} 3 \text { _Pit3.9Hz }} \tag{12}\\
& T_{\mathrm{OM} 3 \mathrm{P} _\mathrm{QBP}}=\sqrt{\frac{8}{\pi}} \frac{1}{w_{\mathrm{BV}}} \cdot 2 L_{\mathrm{QPDB}} R_{\mathrm{OM} 3 \text { _Pit3.9Hz }} \tag{13}\\
& T_{\mathrm{OM} 3 \mathrm{Y} _\mathrm{QAY}}=\sqrt{\frac{8}{\pi}} \frac{1}{w_{\mathrm{AH}}} \cdot 2 L_{\mathrm{QPDA}} R_{\mathrm{OM} 3 _\mathrm{Yaw} 2.9 \mathrm{~Hz}} \tag{14}\\
& T_{\mathrm{OM} 3 \mathrm{Y} _\mathrm{QBY}}=-\sqrt{\frac{8}{\pi}} \frac{1}{w_{\mathrm{BH}}} \cdot 2 L_{\mathrm{QPDA}} R_{\mathrm{OM} 3-Y a w 2.9 \mathrm{~Hz}} \tag{15}
\end{align*}
$$

Here $w_{\mathbf{x y}}$ is the spot size at QPD x in y (horiz. or vert.) direction. L_{QPDx} is the lever length from OM3 to QPD x. Note that the negative sign for the last formula comes due to odd number of reflecting optics in the OMC QPDB path. $L_{\mathrm{QPDA}}=0.520[\mathrm{~m}]$ and $L_{\mathrm{QPDB}}=$ $0.962[\mathrm{~m}]$ can be read from Figure 2.

These numbers and formulae provide us the following numbers for the beam sizes:

Spot radius on QPDA
Horiz: $w_{\mathrm{AH}}=0.55 \mathrm{~mm}$
Vert: $w_{\mathrm{AV}}=0.66 \mathrm{~mm}$
Nominal: $w_{\mathrm{AN}}=0.40 \mathrm{~mm}$ (nominal design)

Spot radius on QPDB
Horiz: $w_{\mathrm{BH}}=0.75 \mathrm{~mm}$
Vert: $w_{\mathrm{BV}}=0.80 \mathrm{~mm}$
Nominal: $w_{\mathrm{BN}}=0.61 \mathrm{~mm}$ (nominal design)

Optical path lengths of the OMC QPD paths

Unit: mm
blue numbers indicates
that the beam propagates in the FS medium ($n=1.45$)

Figure 2: Diagram to indicate lever length of the QPD paths

5 Input matrix

Now we wonder what spot sizes we should use. We are not sure how the beam sizes are different with the arms and the intra-IFO power. If we use the nominal beam parameters, this may deviate from the reality. Here the measured values are used in the equation for the spot displacement on the QPDs.

$$
\begin{align*}
\binom{(\mathrm{H} 1: \text { OMC-ASC_QPD_A_PIT_OUT }) w_{\mathrm{AV}} \sqrt{\pi / 8}}{(\mathrm{H} 1: \text { OMC-ASC_QPD_B_PIT_OUT }) w_{\mathrm{BV}} \sqrt{\pi / 8}} & =\left(\begin{array}{ll}
1 & L_{\text {QPDA_WAIST }} \\
1 & L_{\text {QPDB_WAIST }}
\end{array}\right)\binom{V_{\mathrm{POS}}}{V_{\mathrm{ANG}}} \tag{16}\\
\binom{(\mathrm{H} 1: \text { OMC-ASC_QPD_A_YAW_OUT }) w_{\mathrm{AH}} \sqrt{\pi / 8}}{-(\mathrm{H} 1: \text { OMC-ASC_QPD_B_YAW_OUT }) w_{\mathrm{BH}} \sqrt{\pi / 8}} & =\left(\begin{array}{ll}
1 & L_{\text {QPDA_WAIST }} \\
1 & L_{\text {QPDB_WAIST }}
\end{array}\right)\binom{H_{\mathrm{POS}}}{H_{\mathrm{ANG}}} \tag{17}
\end{align*}
$$

Again, the last negative sign comes due to odd number of reflecting optics in the OMC QPDB path.

Looking at Figure 2 again and the distances from the QPDs to the waist position are given as $L_{\text {QPDA_WAIST }}=0.0434[\mathrm{~m}]$ and $L_{\text {QPDA_WAIST }}=0.484[\mathrm{~m}]$.

Taking the inverse matrices of the right hand side, we obtain the calibrated beam axis motion with regard to the waist.

$$
\begin{align*}
\binom{V_{\text {POS_m }}}{V_{\text {ANG_rad }}} & =\left(\begin{array}{cc}
4.56 \times 10^{-4} & -4.94 \times 10^{-5} \\
-9.42 \times 10^{-4} & 1.139 \times 10^{-3}
\end{array}\right)\binom{(\text { H1:OMC-ASC_QPD_A_PIT_OUT })}{(\mathrm{H} 1: \text { OMC-ASC_QPD_B_PIT_OUT })} \tag{18}\\
\binom{H_{\text {POS_m }}}{H_{\text {ANG_rad }}} & =\left(\begin{array}{cc}
3.81 \times 10^{-4} & 4.63 \times 10^{-5} \\
-7.86 \times 10^{-4} & -1.067 \times 10^{-3}
\end{array}\right)\binom{(\mathrm{H} 1: \text { OMC-ASC_QPD_A_YAW_OUT })}{(\mathrm{H} 1: \text { OMC-ASC_QPD_B_YAW_OUT })} \tag{19}\\
\binom{V_{\text {POS_um }}}{V_{\text {ANG_urad }}} & =\left(\begin{array}{cc}
456 & -49.4 \\
-942 & 1139
\end{array}\right)\binom{(\mathrm{H} 1: \text { OMC-ASC_QPD_A_PIT_OUT })}{(\mathrm{H} 1: \text { OMC-ASC_QPD_B_PIT_OUT })} \tag{21}\\
\binom{H_{\text {POS_um }}}{H_{\text {ANG_urad }}} & =\left(\begin{array}{cc}
381 & 46.3 \\
-786 & -1067
\end{array}\right)\binom{(\mathrm{H} 1: \text { OMC-ASC_QPD_A_YAW_OUT })}{(\mathrm{H} 1: \text { OMC-ASC_QPD_B_YAW_OUT })}
\end{align*}
$$

After all, the input matrix is

$$
\begin{align*}
\left(\begin{array}{c}
H_{\text {POS_um }} \\
V_{\text {POS_um }} \\
H_{\text {ANG_urad }} \\
V_{\text {ANG_urad }}
\end{array}\right) & \equiv \mathcal{M}_{\text {in }}\left(\begin{array}{l}
(\text { H1:OMC-ASC_QPD_A_PIT_OUT) } \\
\text { (H1:OMC-ASC_QPD_B_PIT_OUT) } \\
\text { (H1:OMC-ASC_QPD_A_YAW_OUT) } \\
\text { (H1:OMC-ASC_QPD_B_YAW_OUT) }
\end{array}\right) \tag{23}\\
& =\left(\begin{array}{cccc}
0 & 0 & 381 & 46.3 \\
456 & -49.4 & 0 & 0 \\
0 & 0 & -786 & -1067 \\
-942 & 1139 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
\text { (H1:OMC-ASC_QPD_A_PIT_OUT) } \\
\text { (H1:OMC-ASC_QPD_B_PIT_OUT) } \\
\text { (H1:OMC-ASC_QPD_A_YAW_OUT) } \\
\text { (H1:OMC-ASC_QPD_B_YAW_OUT) }
\end{array}\right) \tag{24}
\end{align*}
$$

This $\mathcal{M}_{\text {in }}$ is the matrix to be loaded on the MEDM screen.

6 Actuator selection

In order to know which mirror combination we should use as an actuator, Gouy phases of the beam at the location of the OM mirrors were checked ${ }^{4}$. It was suggested that OM2 and

[^1]OM3 has about 70deg separation with regard to the Gouy phase at OM1. Therefore we decided to use OM1 and OM3. This matrix \mathcal{A} describes how the actuators are combined for each d.o.f.

$$
\mathcal{A}=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \tag{25}\\
0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

7 Output matrix

Now we want to set the output matrix to make the roundtrip open loop matrix diagonal. That means we want find $\mathcal{M}_{\text {out }}$ to fullfil the condition

$$
\begin{equation*}
\mathcal{M}_{\mathrm{in}} \mathcal{T C} \mathcal{A} \mathcal{M}_{\text {out }}=\mathcal{I} \tag{26}
\end{equation*}
$$

Therefore the output matrix (6×4 version) is

$$
\begin{align*}
\mathcal{A} \mathcal{M}_{\text {out }} & =\mathcal{A}\left(\mathcal{M}_{\text {in }} \mathcal{T C A}\right)^{-1} \tag{27}\\
& =\left(\begin{array}{cccc}
0 & -1019 & 0 & 410 \\
0 & 0 & 0 & 0 \\
0 & -369 & 0 & -781 \\
-405 & 0 & 214 & 0 \\
0 & 0 & 0 & 0 \\
-301 & 0 & -392 & 0
\end{array}\right) \tag{28}
\end{align*}
$$

This $\mathcal{A M} \mathcal{M}_{\text {out }}$ is the matrix to be loaded on the MEDM screen.

[^0]: ${ }^{1}$ We are hoping to include more measurements and calculations about the angular control of the OMC later. It should include the details of dither alignment.
 ${ }^{2}$ https://alog.ligo-wa.caltech.edu/aLOG/index.php?callRep=13655.
 ${ }^{3}$ https://alog.ligo-wa.caltech.edu/aLOG/index.php?callRep=13618.

[^1]: ${ }^{4}$ Refer zipped PDF files on https://dcc.ligo.org/LIGO-D1000342

