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Abstract

The search for crackle noise [1] [2] has been limited by the presence of various sources
of noise, including laser frequency noise, laser intensity noise and the misalignment of end
mirrors in the Michelson interferometer. We developed an optimization algorithm that finds the
best parameters that minimize the coupling of these noises into the output. These parameters
include microscopic and macroscopic length difference of Michelson arms, and the angular
alignment of end mirrors.

1 Motivation

Noise reduction is one of the most crucial parts in LIGO science. It has long been suspected
that mechanical crackling noise generated in Advanced LIGO suspension components and joint
interfaces contributes to the noise spectrum. By crackle noise, we mean the impulsive release of
energy, acoustic emissions, or changes in geometry of attachments between suspension elements,
or the stress fields in the element themselves [1].

The crackle experiment [1][2] is set up to measure crackle noise at the displacement sensitivity
of Advanced LIGO. Although Advanced LIGO has an observational band of 10Hz-10kHz, we
are interested to measure crackle noise at 10Hz, the low frequency regime, with a sensitivity of
10−15m/

√
Hz. Two reasons follow: (i) the crackle noise is partially filtered by suspension systems

[2], which have resonant frequencies of a few Hz, so only noise at lower frequencies are of interest;
(ii) crackle noise is expected to decrease with frequency, approximately like 1/ f .

Michelson interferometer is one of the most precise techniques to measure relative distance changes
[3]. Since crackle noise is incoherent in nature, we can use the Michelson interferometer setup to
measure differential displacements of maraging steel blade suspensions at the end of both interfer-
ometer arms [2].

Our detection sensitivity of crackle noise is fundamentally limited by various sources of noise,
including laser frequency noise, laser intensity noise and end mirror misalignments. Fortunately,
these noise couple minimally into our output readings if we adjust the parameters of the exper-
imental setup suitably. In the past, the ideal parameters can only be determined using trial and
error. In addition, these parameters constantly drift away from the ideal adjustment due to ran-
dom environmental influences, and had to be readjusted very frequently. Hence, measurements
can be tedious and laborious. The goal of this project is to develop an algorithm that adjusts these
parameters automatically and accurately to faciliate measuring efforts in the upgraded setup.
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2 Michelson Interferometer

In the crackle experiment, the parameters that we adjust are the arm lengths of Michelson interfer-
ometer and the end mirror angular alignments. Since the only relevant distance in the Michelson
interferometer is the relative distance between two arms, we fix the length of one arm, and translate
the other arm using a piezomotor driven translation stage. The end mirror alignments are controlled
using magnetic actuators, two on each mirror to control all four degrees of freedom [2]

The output signal of Michelson interferometer is taken as the difference between signals read at
the symmetric and antisymmetric ports. The reason of this approach will be evident as we discuss
laser intensity noise in section 4.

The optimization algorithms developed are first being tested in simulation before being imple-
mented in the real crackle experiment. The simulations are done with MIST open source toolbox
[4] in a MATLAB environment. The Michelson interferometer compilation file is attached in ap-
pendix [1], based on figure 1.

Since measurement uncertainties are present in the real crackle experiment, we have created two
functions for adding them in the simulation. One introduces uncertainties with a given absolute
value range, another introduces noise based on percentage uncertainty of the measurement. (See
appendices [2] and [3]). Both functions assume that the uncertainty is given by a uniform distribu-
tion. The magnitude and type of measurement uncertainty (either one of the two functions above)
used will be dependent on our past experiences of the crackle experiments. The values used in the
simulation are added in all of the codes in the appendix.

Figure 1: Optical configuration of Michelson interferometer simulation.
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3 Laser Frequency Noise

Laser frequency noise is the fluctuation of frequency of laser with time. This arises from various
sources inherent in the optical system, and are usually very difficult to be eliminated. These sources
include noise generated by NPRO crystal oscillator, changes in laser cavity length, temperature,
pumping power and so on. However, the amount of laser frequency noise coupled into the output
ports, namely the optical gain of laser frequency noise, is proportional to the macroscopic length
difference between the two arms, expressed by the relationship below: [2]

gfreq = ∆L/ν (1)

where gfreq is the optical gain of laser frequency noise (units m/Hz),ΔL is the macroscopic length
difference between both arms and ν is the frequency of laser. Hence, our aim is to adjust the
macroscopic length difference of both arms, to minimize coupling of laser frequency noise into
our output signal.
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Figure 2: Transfer function of symmetric(SP) and antisymmetric (AP) ports from longitudinal
motion of mirrors to photodiodes. Top subplot is the relationship between the ratios of output
power against input power with respect to the frequency of oscillation of mirrors at both ports,
TFmich, which are shown to have same absolute value. The bottom subplot is the phase at both
ports with respect to the frequency of oscillation of mirrors, with ports at 0 and π respectively.
This explains the antisymmetric fringe pattern in Figure 8.

To simulate equation 1, we need to represent laser frequency noise in terms of the equivalent
amount of noise coupled due to arm length difference. We compute two transfer functions: one
from the longitudinal motion of mirrors to power measured at photodiodes, TFmich as shown in
Figure 2, and another from the laser frequency to power measured at photodiodes, TFlas as shown
in Figure 3. The laser frequency noise coupling is then obtained by gfreq = TFmich/TFlas. See
appendices [4, 5].
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Figure 3: Transfer functions of symmetric (SP) and antisymmetric (AP) ports from laser frequency
modulation to photodiodes, when macroscopic length difference is zero. Top subplot is the rela-
tionship between ratios of output power against input power with respect to modulation frequency,
TFlas. The bottom subplot is the phase at both ports with respect to the laser frequency modulation.
Notice that the SP and AP values are the same, as we expected from equation 1.
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Figure 4: Optical gain of laser frequency noise vs macroscopic length difference of both arms.
Simulation is in good agreement with equation 1.
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In a more realistic model, measurement uncertainties in the transfer function and macroscopic
length of the movable arm should be taken into account. Given the linear relationship in equation
1, we minimize laser frequency coupling using the following method (see appendix [6]):

1. Sample two points: one at the current position of the movable arm, and another at 1 mm shorter
than the current length. This is about 1/10 of the travel range of the piezomotor driven translation
stage.
2. Calculate the gradient between two points, use linear extrapolation to estimate the position that
corresponds to zero g freq.
3. Move the arm to the estimated position.
4. Repeat steps 1 to 3 until the laser frequency noise gain hits a value below the threshold gfreq.

In the real crackle experiment, the length of stationary arm is 316 mm. The piezomotor driven
translation stage that controls the length of the movable arm [2] has a travel range of 12 mm, and
the minimum step size is 0.05 µm. Figure 5 shows the case when initial length of movable arm is
set at 328 mm. This value correspond to (316+12) mm, which is an extremum of the allowed range
of movable arm length. We also simulate the interferometer using a laser frequency gain threshold
value gfreq < 0.1×10−17 m/

√
Hz, with 1% measurement uncertainty in the transfer function. The

algorithm described above is repeated 100 times and the statistical data is collected.
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Figure 5: 100 repeated measurements of the initial length of movable arm at 328 mm.

Figure 5 shows that the algorithm performs extremely well. Left graph of top row shows the
timeline of the change of macroscopic length of movable arm. Notice that each iteration usually
comes in a group of 3 points (see step 1-2 in algorithm above): red is first sampled point, blue is the
second sampled point, and green is the extrapolated point. The y-values of the first red and the first

page 5



LIGO-T1400509-v1

blue points remain approximately unchanged because they correspond to the initial position and
a step away from initial position respectively. These points are used to estimate the extrapolated
point, which correspond to the range of green points in step 3. If the threshold value is not met, the
iteration is repeated. Right graph of top row shows the iteration process of gfreq against length of
movable arm. Notice that the black points concentrate about the initial position, and the red points
concentrate about the length of stationary arm, as expected. Bottom row shows the statistics of
the 100 repeated measurements. Notice that the laser frequency noise coupling and macroscopic
length of movable arm peak about 0 m/Hz and 316mm respectively, as expected. The algorithm
also takes a range of 4-6 sample points to complete the algorithm, which is efficient.

A natural question follows: how large does the percentage uncertainty of measured transfer func-
tion has to be for the algorithm to fail? Figure 6 shows that at a measurement percentage uncer-
tainty of approximately 5%, the algorithm starts to have occasional iterations that deviate greatly
from the regime close to the length of immovable arm. Some of the lengths are also beyond the
range of translation stage. Hence, we can crudely say that the algorithm works well only when the
transfer function percentage uncertainty is below 5%.
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Figure 6: Implementations of the algorithm, with transfer function percentage uncertainty of 5%
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4 Laser Intensity Noise

4.1 Locking

Laser intensity noise is the fluctuation of laser output power, and couples to the ports proportionally
to the power incident on the photodiode, given by the relationship below [2]:

gRIN =
PAP

Pi
= sin2

φ+CD (2)

where gRIN is the optical gain of laser intensity noise, PAP is the power incident at antisymmetric
port, Pi is the initial power of laser, φ is the Michelson fringe tuning, and CD is the fringe contrast
defect, which arises mainly due to different reflectivities of mirrors on both arms and misalignment
of optical elements.

Another common way of representing laser intensity noise is by the relative intensity noise (RIN)
factor, defined as

RIN =
δP
P

(3)

where δP is the amplitude of laser power fluctuation, and P is the mean laser power.

Laser intensity noise is eliminated if we take the difference between symmetric and antisymmetic
port signals as the output signal. In an ideal case where no asymmetries in the interferometer are
taken into account, this happens if we operate the interferometer at the half fringe point, where the
phase difference ∆φ between both arms satisfy the relationship

∆φ =
nπ

2
+

π

4
(4)

where n is any integer. The half fringe condition is also the point where we obtain maximum
sensitivity to differential displacement, because it corresponds to the point with steepest gradient
of the fringe pattern (see figure 8). To achieve this, a negative feedback mechanism called locking
is implemented, which allows the Michelson interferometer to operate at the point where both
symmetric and antisymmetric ports have equal power.

Notice that as long as the Michelson interferometer is locked, laser intensity noise does not couple
into the output. From equation 2 and 3, laser intensity noise is proportional to the power of laser
incident at the ports. Since locking is by virtue the mechanism that allows interferometer to operate
at the point where the power readouts at both ports are equal, by taking the difference between port
signals, laser intensity noise cancels out each other. Hence, it is worth emphasizing that the only
crucial factor to eliminate laser intensity noise is to ensure that interferometer arms are locked. The
algorithm for locking is readily available in the MIST optical toolbox. Figure 7 shows a simulation
example of the timeline of locking.
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Figure 7: Locking feedback mechanism after a microscopic perturbation of 2 ×10−7 rad is intro-
duced in one arm. Top subplot shows the error signal between powers incident at both ports. Bot-
tom subplot shows the correction on microscopic length difference between both arms to achieve
locking.

4.2 Adjusting relative gain

Inherent asymmetries in the system, such as different mirror reflectivities and photodiode gains,
prevent us from having the same fringe pattern amplitudes at both ports. This reduces our sen-
sitivity to differential displacement. Notice from first column of Figure 8, the intersection points
between symmetric and antisymmetric patterns do not correspond to maximum gradient. Maxi-
mum sensitivity is achieved only when we equalize the power readouts, leading the operating point
to the half fringe point. This can be done by carefully tuning the relative gains of both ports. The
relative gain can only be determined empirically, hence it is vital that we scan through the fringe
pattern to obtain the average power across the fringe pattern at the ports.

Here our assumption is that noise is perfectly random and hence averages to zero. Two simulation
examples are shown in Figure 8. The following steps describe the basics of our strategy (see
appendix [7]).

1. Scan through fringe pattern at both ports.
2. Calculate the average powers incident at both symmetric and antisymmetric ports across the
fringe patterns.
3. Calculate the ratio of the average value of powers calculated at step 2.
4. Increase gain of the port that receives lower power and equalize the power of both ports.
5. Lock both arms to the appropriate microscopic tuning. This operating point should be at half
fringe point now.
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(a) Before: gR = 1.84; after: gR =0.86.
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(b) Before: gR = 0.77; after gR = 1.04.

Figure 8: Suppose we define relative gain, gR= PSP
PAP

. First column shows fringe pattern before
relative gain adjustment. Second column shows that after relative gain adjustment.

Figure 8 shows that the algorithm works well. Notice that before adjusting the relative gain, the AP
and SP graphs do not intersect at x-axis=0 (see left column), but they do after the adjustment (see
right column). This means that before relative gain adjustment, the locking is not at its optimal
point. After the adjustment, half-fringe point is achieved, hence both fringe patterns are equal,
except with a phase shift of π.
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5 Mirror Misalignment

5.1 Laser Beam

We include a brief discussion of theory of laser beam in this subsection, which provides the reader
crucial insight into fixing the misalignment of mirrors. Laser beams behave similarly as planar
waves, except their transverse intensity distribution varies with distance from the centre, and addi-
tional parameters such as beam radius and radius of curvature at each transverse plane should be
taken into account. From the wave equation, by separation of variable, and consider only the spatial
component (assuming steady state), Helmholtz equation is obtained using paraxial approximation
[5, 6].

∇
2
ψ+ k2

ψ = 0 (5)

where ψ is the wavefunction of the laser beam. We define z to be the direction of propagation, and
the x-y plane the transverse plane. The fundamental mode of the equation above has the following
expression:

ψo =

√
2

πw2 ei(kz+ k(x2+y2)
2R +Φ)e−

x2+y2

w2 (6)

where k is the wavenumber, R the radius of curvature of the wavefront and w the beam radius at
z. The first term on right hand side is just a normalisation constant, the second term illustrates
the phase change as we move along the x, y, and z directions, Φ is just an arbitrary phase, while
the last exponential illustrates the Gaussian intensity profile. The fundamental mode is hence a
Gaussian beam. Higher order mode solutions that satisfy equation 5 can also be found, and they
form a complete set of linearly independent solution for a laser beam. These solutions are called
Gaussian-Hermite modes (for rectangular symmetry) and Gaussian-Laguerre modes (for circular
symmetry) [5, 6]. These higher order modes are represented by Ψm n, where n and m are the
integers that describe the order of the modes. This will be useful for our discussion later.

Further expressions of R and w as functions of the propagation distance z can be derived from
equation 5, given by [5, 6]

w2(z) = wo
2
[

1+(
λz

πwo2 )
2
]

(7)

R(z) = z
[

1+(
πwo

2

λz
)2
]

(8)

where wo is the beam waist size, λ the wavelength of laser, and the other expressions have their
usual meaning. These expressions imply that at z=0, laser beam has minimum beam radius and the
wavefront is planar.

From equation 7, the beam radius varies with z, with the shape of a hyperbola, as shown in Figure
9. The divergence angle θ is defined as the angle between an asymptote and the optical axis, given
by [5, 6]

θ =
λ

πwo
(9)
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Figure 9: Beam profile.

5.2 Fringe Contrast

Figure 10: Configuration of optical simulation with a tilted mirror. Note the exaggerated misalign-
ment angle.

Figure 11: Diagram of the effect of mirror misalignment on phase addition on laser beam. Note
the exaggerated misalignment angle. Small angle approximation is used.
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The crackle experiment will be set up such that when both arm lengths are equalized, the radii of
curvature of laser beams at the end mirrors are infinite, i.e. wavefronts are planar and the beam
waist is wo = 300 µm. This can be done by a series of optical elements, such as converging and
diverging lenses, added into the setup. From our previous discussion, this means that we can set
z=0 at both end mirrors.

Without loss of generality, let us consider the simplest case where only one mirror is tilted by
an angle α, as shown in Figure 10. Using small angle approximation, the centre of a Gaussian
beam that is reflected by the tilted mirror will be shifted by a distance 2L2α away from the centre
of the other beam, where L2 is the length of Michelson arm with tilted end mirror. Hence the
wavefunction will be given by this form:

ψr =

√
2

πw2 ei(kz+ k[(x−2L2α)2+y2]
2R +Φ+2kαx)e−

(x−2L2α)2+y2

w2 (10)

Notice that equation 10 above differs from equation 6 by two features: first, the centre of equation
10 Gaussian is shifted along the x-direction; second, an additional phase term of 2ikαx arises due
to reflection at the tilted mirror, as explained by Figure 11. We present here a simple derivation of
the relationship between scalar product of two wavefunctions and the fringe contrast of the pattern
detected at the photodiodes. Let ψ1 and ψ2 be two general wavefunctions that superpose with one
another at the same spatial point (in the Michelson interferometer, this occurs at the beamsplitter),
the power P incident at either photodiode is

P =
∫ ∫

|ψ1 +ψ2|2dxdy

=
∫ ∫
{|ψ1|2 + |ψ2|2 +2Re[ψ1ψ2

*]}dxdy

= 2{1+
∫ ∫

Re[ψ1ψ2
*]dxdy} (11)

where we used wavefunction normalization in the third line. The first term in curly brace on
the third line is the average power incident at photodiodes, while the second integral term is the
sinusoidal interference pattern. We can therefore deduce that

Pmax = 2{1+
∫ ∫

Re[ψ1ψ2
*]dxdy}

Pmin = 2{1−
∫ ∫

Re[ψ1ψ2
*]dxdy}

=⇒
∫ ∫

Re[ψ1ψ2
*]dxdy =

Pmax−Pmin

Pmax +Pmin
(12)

Hence, using equations 6, 10 and 11, the scalar product of two wavefunctions at the beamsplitter
is given by ∫ ∫

Re[ψrψo
*]dxdy = e−

2L2
2α2

w2 − k2w2α2
2 +

k2w2L2α2

R −
k2L2

2w2α2

2R2 (13)

where the first term in equation 13 arises due to the shifted Gaussian centre as depicted in Figure
10, the second term due to the amplitude reflection coefficient caused by tilted mirror as depicted
in Figure 11, and the remaining terms due to the difference in curvature of split beams wavefronts
when they are incident at the beamsplitter.
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(c) m+n=6.
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(d) m+n=8.

Figure 12: Fringe contrast against mirror angular misalignment.

Figure 12 shows the graph based on equation 13 and the MIST simulation with varying number of
modes. (See appendix [8]) It is observed that for n+m ≥ 6, the simulation is in good agreement
with the model. In principle we can increase the value n+m to as large as we want to get the
most accurate waveform, but that will take enormous amount of computational time and will be
impractical. We decided that n+m=6 is a good balance between computational time and accuracy.

5.3 Tackling misalignment (gradual step method)

Our aim is to adjust the mirror alignment so that maximum fringe contrast is observed. Since each
mirror can rotate about x- and y-axes, there is a total of four degrees of freedom involved. However,
since what really matters is the relative alignment between the mirrors, we can in principle adjust
only two orthogonal degrees of freedom, i.e. one about x-axis and another about y-axis.

Using our prior information of figure 12, and given a certain misalignment of unknown value α,
we adopt the following method (see appendix [10]:
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(a) α =-0.0005rad
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(b) α = -0.0015rad
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(c) α = 0.002rad

Figure 13: Simulation results for three different initial misalignment at one end mirror. Each
example is given in a row. The first column is the fringe contrast pattern sampled at 10 equally
spaced points, as described in step 2. The second column shows the increase or decrease in angular
displacement with increasing step, described in step 4. The third column is the change in fringe
contrast measured with increasing step, described in step 5.

1. Choose a step size of angular displacement. This value should be limited by the sensitivity of
angular control, but should also be small enough such that fringe contrast changes incrementally.
From Figure 12, a suitable step size is 10µrad.
2. Sample a few, say 10, equally spaced points across the range (α-0.003, α+0.003) radians. This
is the 5-sigma range of angular misalignment obtained from Figure 12. The results are shown in
first column of Figure 13.
3. Align the mirror to the sampled point with maximum value of fringe contrast.
4. Take a step of 10µrad at a random direction. If the fringe contrast increases, repeat step 3. If the
fringe contrast decreases, reverse the step at another direction. Results shown in second column of
Figure 13.
5. Repeat step 3 until the mirror aligns at the position such that it achieves maximum fringe
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contrast. Shown in third column of Figure 13.
6. Repeat steps 1 to 5 for the other degree of freedom.

This first approach poses various problems. Firstly, the step size is fixed, which may lead to the
possibility of infinite oscillation of the iteration if the step size is too large, or an enormous com-
putational time if the step size is too small. Secondly, consider step 5 above. When random noise
is considered, it is imposssible to know when the point has reached its maximum. The only so-
lution to this problem seems to be scanning through the entire fringe contrast, and calculating the
average of the maxima points. However, this defeats our initial purpose of optimizing mirror align-
ment without scanning the fringe contrast pattern, which is time consuming. More importantly, the
fundamental assumption in this algorithm is that the mirror degrees of freedom are completely
independent of each other. This is unlikely to be true in the real crackle experiment setup.

5.4 Tackling misalignment (gradient ascent method)
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Figure 14: Fringe contrast pattern, divided into 5 different regions. Red points show the upper and
lower bound of each region

Owing to various disadvantages of the method above, we adopt an alternative method, called the
gradient ascent optimization method [7]. This new approach measures the direction of steepest
gradient, i.e. largest change in fringe contrast per unit angular displacement, in the 4-parameter
space, and moves the operating point towards the global maximum by iteration. It also allows
all four degrees of freedom to be adjusted simultaneously at each iteration, which overcomes the
possible angular dependencies between one another, as discussed in the previous subsection.

The crucial parameter in the gradient ascent optimization method is the step size. If the measured
fringe contrast is small at a given operating point, we use large step sizes to increase the rate of
convergence. This is also important when measurement uncertainty in fringe contrast is considered,
which significantly affects fringe contrast measurements at low powers. If the measured fringe
contrast is high, we use small step sizes. This can be illustrated by considering Figure 12. Suppose
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Figure 15: Fringe contrast against number of iterations. Note these figures don’t show which de-
gree of freedom is actuated in each step to increase fringe contrast. Refer to figure 16. Oscillations
are occasionally observed because random noise is present.

we are at an operating point where fringe contrast is close to unity. If a large step size is used, even
though the mirror moves in the correct direction, we ’cross over’ the other half of the figure and
measures a decrease in fringe contrast.

The conventional adaptive step size method [7] calculates the step size as a function proportional to
the local gradient. However, the algorithm only converges linearly, and can be as inefficient as the
gradual step method, especially if the operating point has low fringe contrast and local gradient.
Here we present slight modification to the conventional approach. Given the fringe contrast pattern
in figure 12, we divide the pattern into five regions as shown in Figure 14. We assign a maximum
step size, δmax to each region. Recall that in order to avoid ’crossing over’ as previously discussed,
δmax is the x-value of upper bound point of the region. For example, for region III δmax < 0.256
×10−3 rad; for region II δmax < 0.662 ×10−3 rad. When noise is considered, δmax of each region
should be smaller than these values.

In the real experiment, we do not have an expression of the fringe contrast as a function of angular
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displacement. Hence, we can only measure the local gradient, gradlocal by perturbing the angular
displacement of all degrees of freedom and measure the fringe contrast at the new points. We form
a 4-vector in 4 parameter space, which is the direction of steepest gradient. Then, we calculate the
step sizes using the following linear approximation:

δ = δmax
gradlocal

gradmax
(14)

where δ is step size of each degree of freedom, δmax is the maximum step size of each region,
gradmax is the maximum global gradient of figure 14. By calculating the second order derivative
of equation 10, we obtain gradmax = ±1075/rad.

The following steps illustrate our method (see appendix [9, 11]:

1. Measure fringe contrast.
2. Measure the local gradient of each degree of freedom.
3. Adjust step size, depending on the value of fringe contrast and local gradient as discussed above.
4. Move the mirror along the direction of steepest gradient.
5. Repeat steps 1 to 5 until threshold accuracy is met.
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Figure 16: Angular displacement of all degrees of freedom of the bottom-right iteration of figure
15

From figure 15 and 16 this approach to mirror alignment works very well in simulation, and takes
up reasonably less time than the first approach. However, one of its limitation is that it might
oscillate if the initial operating point is at a low fringe contrast value, like region I in Figure 14.
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If the fringe contrast is lower, it might oscillate indefinitely. To avoid this problem, we adopt the
gradual step method discussed in the previous section if the operating point falls within region I.

6 Conclusion

The algorithms used to reduce coupling of laser frequency noise, laser intensity noise and the
misalignment of Michelson end mirrors have been tested rigorously. The next step is to implement
these algorithms in the real crackle experiment.
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