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1. Introduction 

I am continuing to develop a process where a Nikon D7100 with an AF Micro Nikkor 200mm 1:4 D lens can be remotely 
controlled to take images of the optics in Advanced LIGO.  I am also writing code to process the images in MATLAB 
utilizing MATLAB’s Image Processing Toolbox.  The program counts the number of particles and measures their various 
sizes, providing accurate and immediate information about the contamination on the optics.  An initial progress report 
on my work up to this point can be found in the following document: LIGO-T1400474-v1.  

 

2. Progress 

At the end of my first progress report, I was investigating purchasing a Nikon TC-200 or TC-201 Teleconverter to increase 
the resolution of the images and was beginning to experiment with MATLAB’s image processing toolbox to discover 
which functions would be useful when writing a code to process the images and count the particles. 

None of the camera shops in Pasadena carried a TC-200 or TC-201 Teleconverter, so we ended up purchasing a TC-
201(2x) Teleconverter from Amazon.  While waiting for the Teleconverter to arrive, I began experimenting in Matlab and 
soon realized that the functions necessary for detecting and measuring the particles only exist in MATLAB Image 
Processing Toolbox version 8.2 or greater.  Once I downloaded version 9.0, the most recent version, I investigated the 
different functions in the toolbox and worked through the three following step by step MATLAB tutorials available on 
MathWorks.com: “Identifying Round Objects, “Detect and Measure Circular Objects on an Image,” and “Detecting a Cell 
Using Image Segmentation.”  I spent several days familiarizing myself with MATLAB and its functions as I had never done 
any computer coding before and needed to understand how basic coding works in MATLAB before attempted to write 
my own code. 

After I ran through these tutorials, I began experimenting with combining various functions in a code that could convert 
one of the images I took using the Nikon D7100 to binary, detect the particles in the image, circle the particles, and 
measure the area, perimeter, and diameter of the particles.  The following is a code I wrote to try to detect and measure 
the particles using the imfindcircles function. 

%Experimenting with matlab and lab picture 000161 
  
%read image 
rgb = imread('000161crop.jpg'); 
figure 
  
  
% Convert image to grayscale 
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gray_image = rgb2gray(rgb); 
  
  
%convert grayscale to binary 
BW = im2bw(gray_image); 
  
  
%tried smoothing the edges but approx half the particles disappeared 
%seD = strel('diamond',1); 
%BWfinal = imerode(BW,seD); 
%BWfinal = imerode(BWfinal,seD); 
%figure, imshow(BWfinal) 
  
  
%detect circles 
[center1, radius1] = imfindcircles(BW,[1 10],'ObjectPolarity', ... 
    'bright','Sensitivity',0.95); 
[center2, radius2] = imfindcircles(BW,[11 20],'ObjectPolarity', ... 
    'bright','Sensitivity',0.95); 
  
%outline 'Bright' particles with darker Circles of Different Color 
imshow(BW); 
hBright = viscircles(center1, radius1,'EdgeColor','r'); 
hBright = viscircles(center2, radius2,'EdgeColor','r'); 

 

I quickly found that imfindcircles only detects perfect circles, and because the particles on the optic are not perfect 
circles, the function could not accurately detect them, as can be seen in the following close up of one of the particles on 
the processed image.   

 

2 
 



LIGO -T1400506-v1 
 

I tried increasing the sensitivity so that it would detect circular objects with higher eccentricities, but it continued to 
detect only perfect circles and even began circling particles that were not there.  On the other hand, when I lowered the 
sensitivity, it was unable to detect a large portion of the particles.  Therefore, I decided to see if I could use another 
function to outline the particles.  I replaced the two sections of code that detected and outlined circles with the 
following code to outline the detected particles using the bwboundaries function. 

%outline 
[B,L] = bwboundaries(bw, 'noholes'); 
% figure, imshow(bw);  
for k = 1:length(B) 
    boundary = B{k}; 
    plot(boundary(:,2), boundary(:,1), 'r', 'LineWidth', 2) 
end 
 

MATLAB was able to accurately detect and outline the particles on the image.  This success is evident in the following 
image, which is of the same particle that imfindcircles was unable to detect. 

 

With outlines around the detected particles, I can see which particles MATLAB detects, and therefore, catch any errors 
in detection that may occur, such as if it misses particles, detects ones that do not exist, or under or over estimates their 
sizes. 
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I knew which particles MATLAB detected and how accurately it detected their edges, but I still needed a way to find the 
measurements of the detected particles.  I discovered the function regionprops, which measures both the area and 
perimeter of connected components in the image.  MATLAB displays the answers in terms of pixels, so I wrote a 
conversion to meters into the code, utilizing the pixel/meter ratio I calculated earlier when using Toupview.  I explain the 
process of how I found this ratio in my first progress report.  To check that the pixel/meter ratio was the same in 
MATLAB as Toupview, I loaded the same image of the ruler I used to calculate the ratio in Toupview and used the 
imdistline function to create a distance line.  I used the distance line to measure 40mm and discovered that this distance 
was equivalent to 2138.08 pixels.  From this information, I calculated that the ratio was 53452 Pixels/Meter, which is 
close to the 53544 Pixels/Meter ratio I calculated in Toupview, the slight difference due to human inability to draw a 
precisely 40mm line in pixels. I used this new ratio to convert the area and perimeter measurements from pixels to 
microns and millimeters.  Once I had these measurements, I calculated what the particles’ diameters would be if the 
particles were perfect circles.  The following section of code measures the particles and performs these conversions on 
them.  

%find the areas and perimeters of the objects detected in pixels 
D1 = regionprops(bw, 'area');  
D2 = regionprops (bw, 'perimeter'); 
%answers in structure array form 
%will sometimes say perimeter=0 because can't measure when particle is only one pixel 
  
%converting from structure array to matrix form 
areatemp = cell2mat(struct2cell(D1)) ; 
perimtemp = cell2mat(struct2cell(D2)) ; 
  
%finding areas of particles in mm^2 and microns^2 
area_mm = (areatemp/2857116304)*1e6; %pixels to mm^2 
area_microns = (areatemp/2857116304)*1e12; % pixels to microns^2 
  
%finding perimeter of particles in mm and microns 
perim_mm = (perimtemp/53452)*1e3; %pixels to mm 
perim_microns = (perimtemp/53452)*1e6; %pixels to microns 
  
%finding radii assuming particles are perfect circles 
radius_mm = ((area_mm)/pi).^(1/2); 
radius_microns = ((area_microns)/pi).^(1/2); 
  
%finding diameter assuming particles are perfect circles 
diameter_mm = radius_mm.*2; 
diameter_microns = radius_microns.*2; 

 

 I double checked the ratio by running the same test image with particles of known size through MATLAB that I ran 
through Toupview. 
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Test Image of Particles of Known Size 

 

I used the imdistline function to measure the diameters of the circles in pixels and used the pixel/meter ratio I calculated 
to determine their diameters and areas in millimeters.  The following chart shows the known dimensions as well as the 
dimensions according to Toupview and MATLAB. 

Hand 
Calculated 
Diameter (mm) 

Matlab 
Diameter 
(pixels) 

Matlab Diameter 
(mm) 

ToupView  
Diameter (mm) 

Hand Calculated 
Area (mm^2) Matlab Area (mm^2) 

ToupView  Area 
(mm^2) 

1 64.5 1.206690114 1.277009192 0.785398 1.143619077 1.28079 

2 117 2.188879743 2.225262706 3.14159 3.762995382 3.88913 

3 156.75 2.932537604 3.089575516 7.06858 6.754248903 7.497 

4 217.88 4.076180498 4.259818917 12.56637 13.04958484 14.25188 

5 294.75 5.514293198 5.595062155 19.63495 23.88193926 24.58667 

6 325.88 6.096684876 5.999999588 27.9955 29.19290925 28.27433 

8 420.75 7.871548305 7.999999804 49.782 48.66426979 50.26548 
 

Just like Toupview, while the smaller measurements seem highly inaccurate, the circles were hand drawn and on such a 
small scale that there is a large margin for human error.  Additionally, when I measured the 5 mm circle and the 4 mm 
circle again, the calculated diameters were more accurate than my initial measurements because the paper soaked up 
and spread the ink from the pen.  In this case, the 6 mm and 8 mm circle data yield the most accurate results due to the 
decreased human error and higher precision from their increased size.  Considering the human error involved, the 
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differences between the diameter and area calculated using MATLAB , the ones calculated in Toupview, and the known 
ones based on hand measurements are so slight as to be negligible.  Therefore, the results confirm the accuracy of the 
53452 pixel/meter ratio in MATLAB for the Nikon D7100 with an AF Micro Nikkor 200mm 1:4 D lens 40 inches away from 
the optic. 

Next, I ran an actual image of the optic through both Toupview and MATLAB to see if their results were comparable or if 
one program outperformed the other.  The full Data Sheet of the results can be found in the following document: LIGO-
T1400494-v1.  As can be seen in the graphs below, the smallest particles Toupview resolved had a diameter of 
96.57259349 microns.  Approximately one third of the particles are 96.57259349 um, which reveals that Toupview 
rounds any particles below or around this size to this lower limit, which makes the size measurements for the smaller 
particles highly inaccurate.  On the other hand, MATLAB resolved particles that were far smaller, down to a diameter of 
21.11013932 microns, which demonstrates that MATLAB can resolve particles that are over 70 microns smaller than 
Toupview.  However, while MATLAB only detected 152 particles with the largest particle reaching a diameter of 
272.8031214 microns, Toupview detected 218 with the largest particle reaching a diameter of 298.0294938 microns; 
MATLAB erased and shrunk particles during processing.   
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Particle Resolution Using Toupview and Nikon D7100  
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By examining the processed image, I discovered that this error is due to MATLAB’s use of a default setting when it 
converts images to binary.  The automatic settings create inaccurate results because each image requires unique 
settings.  Detecting dust particles requires a high level of accuracy, so the settings have to be precise.  If the threshold is 
too high, MATLAB will read certain particles or sections of the particles as part of the background and color them black, 
effectively shrinking them or erasing them from the image.  However, if the threshold is too low, MATLAB will read 
brighter parts of the background as particles and detect ghost particles that do not actually exist.  As can be seen in the 
following images, the hand thresholded binary image from Toupview is far more accurate in terms of the size and 
number of particles than the automatically thresholded image from MATLAB.  The MATLAB binary image is missing a 
large number of particles and the particles that remain are far smaller than they were in the original image. 
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Original Image 

 

Toupview Hand Thresholded Binary Image 
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MATLAB Automatically Thresholded Binary Image 

 

Having isolated the source of the problem as the automatic conversion to binary, I then had to find a way to write a 
control into the code that would allow the operator to adjust the threshold by hand.  After searching for several hours, I 
discovered that Version 9 of MATLAB image processing toolbox, the most recent version, has a preexisting color 
thresholder app.  I ran the code once to generate a binary image, clicked on the app, and imported the image by clicking 
on the green arrow that says “import” and then clicking on “import from workspace.”  I was then able adjust the HSV 
color space by hand to threshold the image.   To properly adjust the image, I followed a Mathworks tutorial titled “Image 
Segmentation Using the Color Thresholder App.”  The following is the resulting binary image:   
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Matlab Hand Thresholded Binary Image 

I then exported the image, inserted the name of the new image into the line of code following the conversion to binary, 
the line that fills in holes in the particles, and ran the program a second time to measure the particles on the new binary 
image.   

 

Exporting the new image from the Color Thresholder App.  “BW2” is the name of the new image. 
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%fill in holes 
bw = imfill(BW2,'holes'); 

Inserting the name of the image into the next line of code. 

 

 With the new hand thresholded image, MATLAB detected 533 particles, ranging in size from a diameter of 21.11013932 
microns to 324.3001138 microns.  This data fits with the data collected from Toupview because MATLAB can detect 
particles far smaller than Toupview, and thus, detects more particles than Toupview.  Furthermore, when I compared 
the Toupview image, the hand thresholded MATLAB image, and the original image, I found that the MATLAB image is 
more accurately thresholded than the Toupview one.  The slight over thresholding of the Toupview image accounts for 
the increase in particles and particle size, a growth best seen by the 26 micron increase in the diameter of the largest 
particle from Toupview to MATLAB. The Bar graph showing the resolution of the particles can be found below and in 
document LIGO-T1400494-v1 along with the full Data Sheet of the results.  

 

It is evident from the graph of the results that the smallest size MATLAB can detect is a particle with a diameter of 
21.11013932 microns.  Additionally, because the pixel size is 1/53452 of a meter, the area of each pixel is 350.0032528 
um^2 and thus, the area measurements increase in jumps up of 350.0032528 um^2 , which lowers the accuracy of the 
results.  Therefore, while the resolution of particles using the Nikon D7100 in MATLAB is superior to the resolution in 
Toupview, the resolution is still not optimum. To increase the resolution, I turned to the recently arrived Nikon TC-201 
teleconverter.  Because the teleconverter is designed to double the magnification of the image, it would, in theory, 
double the resolution of the image.   
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I repeated the steps I went through without the teleconverter to determine the new image size and calculate the new 
resolution.  I taped a ruler to a white wall and took pictures of it from a 40 inch distance to accurately recreate the 
distance the camera will be from the optic when on site.  I checked the images and found that a single image covers an 
area of 53 mm x 35 mm. 

 
I then calculated the image resolution using the same process I described earlier and found that 20 mm is equivalent to 
2255.25 pixels, which makes the pixel to meter ratio for the Nikon D7100 with the 2x Teleconverter 1/112762.5 
Pixels/Meter.  This ratio is 2.1096 times greater than the pixel/meter ratio for the camera without the teleconverter, 
which confirms that the teleconverter doubles the resolution. 
 

 
Calculating Pixel to Meter Ratio for Nikon D7100 and 2x Teleconverter 

 
When I went to take a picture of the optic, I discovered that the addition of the teleconverter darkens the image 
considerably.  I retested the settings and after comparing all my test images, I discovered that the best, most consistent 
setting is as follows: 
 

Aperture: f-stop 5.6 (With the Teleconverter, the aperture reads as f0 in ControlMyNikon and the program no 
longer allows the operator to change the aperture remotely.  Therefore, the operator has to change it on the 
camera itself.) 

 Shutter Speed: 1/40 
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 ISO: 200 

 White Balance: Fluorescent 

 Image Quality: Fine 

 Picture Control: Vivid 

 Green LEDs: Anywhere within 28 to 31 Volt bracket 

 
For further confirmation of the new ratio, I measured the diameter of the inner circle on the optic in my new image, 
which I know to be around 27 millimeters.  I used the 1/112762.5 ratio to calculate the distance as 26.2 mm across, 
which confirms that the pixel to meter ratio is accurate.  The slight variation is due to human inability to draw a distance 
line in the exact correct number of pixels, not knowing exactly where the diameter of the circle was on the image, and 
knowing only the approximate size of the ring. 

 

Measuring the Circle on the Optic to Confirm the Resolution Ratio 
 

I then ran the image through the code and hand thresholded it.  As I worked with the thresholder app, I discovered that 
the best way to accurately threshold the images is to open the original image and put it next to the one being 
thresholded so that it is easy to see when particles disappear or ghost particles appear. 
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Thresholding the Image While Comparing it to the Original 

 
 
 
I inserted the name of the new image into the code and ran it a second time.  Before examining the measurements, I 
compared the original image and the processed one to check that the particles on both images matched and found that 
they did. 

 
Original Image Taken With Nikon D7100 and 2x Teleconverter 
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Hand Thresholded Image with Outlined Particles Taken With Nikon D7100 and 2x Teleconverter  

 
MATLAB detected 1896 particles on the image.  The smallest particle had a diameter of 10.0066881 microns and the 
particles increased in area in steps of 78.64490791 um^2 up to the largest particle, which had a diameter of 591.326689 
microns.  The addition of the teleconverter made it possible for MATLAB to resolve and detect particles just over 10 
microns in diameter smaller than it had been able to with just the Camera and Nikkor Lens.  The teleconverter also 
decreased the pixel size from 1/53452 of a meter to 1/112762.5 of a meter, which in turn, significantly decreased the 
jumps between the particle sizes and increased the accuracy of the measurements.  The Bar Graph of the resolution of 
the particles can be found below and in document LIGO-T1400491-v1 along with the full Data Sheet of the results.  
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While the data indicates that MATLAB is able to resolve and detect particles over a large range, I did not know for 
certain how well the system resolves particles at the various sizes.  In order to check that the system does not have any 
problems resolving particles of specific sizes and see what the different size particles look like, I had to examine particles 
of these different sizes on the image.  However, while MATLAB does detect and measure the particles in a particular 
order, thus giving each particle an identifying number, it does not formally assign or display serial numbers for the 
particles.  Therefore, I could not find a way to display the serial numbers on the image and did not know which particles 
matched which measurements.  After trying for several days to write a piece of code that would assign and display serial 
numbers for the various particles, I finally succeeded by measuring the x,y, coordinates of the various particles using the 
centroid function and writing code that goes through and assigns each of the particles a number.  The code then displays 
this number on the image and changes the text color from the default color of black to green.  The serial numbers match 
the order of the particle measurements because centroid is a regionprops function just like the functions that measure 
the particles, and all of the regionprops functions measure the particles by following the same pattern based on the x,y 
coordinates of the particles.  The following is the section of code that numbers the particles and displays the numbers 
on the image. 

 

%number the particles 
s = regionprops(L, 'centroid'); 
centroids = cat(1, s.Centroid) 
  
for K=1: length(centroids) 
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Resolution of Particles using Nikon D7100, Matlab, Hand Thresholding, and 2x Teleconverter 
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    x=centroids(K,1); 
    y=centroids(K,2); 
    a=num2str(K); 
    text(x,y,sprintf('%d',K),'color','g','Fontsize',12) 
%     text(x,y,[sprintf('%d',i),'color',x(k),'Fontsize',8 
  
end 
 
 
 
 

 

Processed Image with Numbering 
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Up close Image of Numbered Particles 

With the inclusion of this section, the final code is as follows: 

%read image 
rgb = imread('000200 (teleconverter).jpg'); 
  
  
% open color thesholder app 
colorThresholder(rgb) 
  
  
%fill in holes 
bw = imfill(BW9,'holes'); 
imshow(bw) 
  
  
hold on 
  
%outline 
[B,L] = bwboundaries(bw, 'noholes'); 
% figure, imshow(bw);  
for k = 1:length(B) 
    boundary = B{k}; 
    plot(boundary(:,2), boundary(:,1), 'r', 'LineWidth', 2) 
end 
  

18 
 



LIGO -T1400506-v1 
 

%number the particles 
s = regionprops(L, 'centroid'); 
centroids = cat(1, s.Centroid) 
  
for K=1: length(centroids) 
    x=centroids(K,1); 
    y=centroids(K,2); 
    a=num2str(K); 
    text(x,y,sprintf('%d',K),'color','g','Fontsize',12) 
%     text(x,y,[sprintf('%d',i),'color',x(k),'Fontsize',8 
  
end 
  
hold off 
  
  
%find the areas and perimeters of the objects detected in pixels 
D1 = regionprops(bw, 'area');  
D2 = regionprops (bw, 'perimeter'); 
%answers in structure array form 
%will sometimes say perimeter=0 because can't measure when outer pixels don't 
%directly connect on image 
  
%converting from structure array to matrix form 
areatemp = cell2mat(struct2cell(D1)) ; 
perimtemp = cell2mat(struct2cell(D2)) ; 
  
%finding areas of particles in mm^2 and microns^2 
area_mm = (areatemp/12715381410)*1e6; %pixels to mm^2 
area_microns = (areatemp/12715381410)*1e12; % pixels to microns^2 
  
%finding perimeter of particles in mm and microns 
perim_mm = (perimtemp/112762.5)*1e3; %pixels to mm 
perim_microns = (perimtemp/112762.5)*1e6; %pixels to microns 
  
%finding radii assuming particles are perfect circles 
radius_mm = ((area_mm)/pi).^(1/2); 
radius_microns = ((area_microns)/pi).^(1/2); 
  
%finding diameter assuming particles are perfect circles 
diameter_mm = radius_mm.*2; 
diameter_microns = radius_microns.*2; 

  
 
 

Once I succeeded in displaying the numbers on the image, I compiled a document that identifies each of the different 
particle sizes, has a corresponding particle image for each, identifies the perimeters of the chosen particles, and lists the 
number of particles there are for each size.  The full chart can be found in the followed document: LIGO-T1400491-v1 
under the title of “Images and Numbers of the Different Sizes of Resolved Particles.”  I discovered that the reason 
particles of the smallest diameter have a perimeter of zero according to MATLAB is because they resolve as a single 
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pixel.  As seen in the image below, MATLAB’s attempt to outline the particle resulted only in a single red dot in its center 
of the particle, which shows that MATLAB cannot find the perimeter of a particle only a single pixel in size. 

 

 I found that the larger the size, the fewer particles there are of that same size, which could be for several reasons.  First 
of all, there could simply be more small particles than large particles on the optic, but it is also because there is a larger 
gap between particle sizes when they are smaller than when they are larger; the smallest two sizes are 10.0066881 um 
and 14.15159403 um with a gap of 4.15 microns between them, while two of the adjacent larger sizes are 93.33617298 
and 93.87105514 with only a .5 micron difference.  Therefore, the system resolves the particles that are in these large 
gaps between the smaller sizes to the nearest pixel and places them in the category closest to their size, which inflates 
the number of pixels of that particular size.  While this grouping does not mean the overall number of particles detected 
is incorrect, it does mean that the smaller particles may not necessarily be the exact size they are measured as, their 
true size within a couple of microns of the measured particle.  The number of particles there are of the same size 
steadily drops from 229 at 10.0066881 um to 72 at 24.51127986 um to 34 at 42.45478208 um and finally down to single 
digits around 60 um.  Also, the gaps between the sizes go from multiple microns to around one micron at around 33 um 
and to fractions of microns at around 50 um.  Therefore, while the lower sizes should not be completely discounted, it is 
important to remember that for particles smaller than 33 microns, the particles may, in reality, have a diameter within 
several microns of the size detected and for particles smaller than 50 um, the particles may have a diameter within a 
micron of the size detected. 

As a final test, I took an image of the optic once half of it had been cleaned using First Contact and cropped it so that I 
had two separate images, one of the dirty half of the optic and one of the clean half of the optic.  I ran the images 
through the code and found that MATLAB detected 310 particles on the dirty half and 6 on the clean half with diameters 
of 14.151594 um, 24.511 um, 33.1884 um, 17.332 um, 10.006688 um, and 24.511 um.  The processed images can be 
seen below.  We simply painted the first contact on, waited for it to dry, and peeled it off, without any further steps, 
which accounts for there still being particles on the clean part of the optic.  Therefore, the results show that MATLAB 
can successfully detect the particles on the optic and convey its cleanliness level.   
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Dirty half of optic 
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Clean half of optic 

 

Looking Forward: 

I have almost completed the objective of the project as I have determined a replicable, optimum camera setup for taking 
images of the optics and am able to take clear, consistent images of the optic.  I have also written a computer code to 
detect and measure the particles on the images down to 10.0066881 microns with a maximum margin of error of 4 
microns. My remaining tasks are adding a command to the code to create a bar graph of the results and writing a final 
report. 
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	Having isolated the source of the problem as the automatic conversion to binary, I then had to find a way to write a control into the code that would allow the operator to adjust the threshold by hand.  After searching for several hours, I discovered ...
	/
	Matlab Hand Thresholded Binary Image
	I then exported the image, inserted the name of the new image into the line of code following the conversion to binary, the line that fills in holes in the particles, and ran the program a second time to measure the particles on the new binary image.
	/
	Exporting the new image from the Color Thresholder App.  “BW2” is the name of the new image.
	Inserting the name of the image into the next line of code.

