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A gravitational-wave background is expected to arise from the superposition of many gravitational-
wave signals, which are too weak to detect individually, but which combine to create a ”stochastic”
gravitational-wave glow. By measuring the stochastic background, we can probe a wide range
of interesting science, from neutron stars to the inflationary epoch shortly after the Big Bang.
This project is focused on studying the stochastic gravitational wave background originating from
compact binary coalescence sources that we hope to detect with the Advanced LIGO-Virgo detector
network. In particular, we are in the process of developing software to analize data from the
Advanced LIGO-Virgo network, using Baysian analysis with a Markov Chain Monte Carlo algorithm
to estimate the parameters associated with the stochastic gravitational wave background. We have
applied this technique to simulated LIGO data in order to show that it is possible to infer the
parameters associated with star formation rate density. Future work will focus on making the
software sensitive enough to extract information from tiny signals buried deep in the noise of real

LIGO data.
I. INTRODUCTION

Space and time can be thought of as a single fabric,
which can be warped and stretched by massive objects.
This warping of spacetime is what we call gravity. Binary
systems consisting of extremely massive objects such as
neutron stars or black holes orbiting around a common
center of mass cause spacetime to ripple outward, similar
to the way ripples form in a pool of water. These rip-
ples are what we call gravitational waves. Gravitational
waves are produced by accelerating masses, similar to
the way electromagnetic waves are produced by acceler-
ating charges. Gravitational wave detectors are basically
giant two-armed interferometers, which use laser inter-
ference to measure the relative change in arm length, or
strain, caused by passing gravitational waves. There are
currently two gravitational wave detectors in the United
States, known collectively as LIGO [1]. Initial LIGO was
made more sensitive and updated to Advanced LIGO,
which has increased the sensitivity by a factor of 10 [5].

The superposition of many localized, unresolved, and
independent gravitational wave sources makes up the
stochastic gravitational wave background (SGWB). The
word ”stochastic” means that though most of the sources
are too weak to be detected individually, we can still an-
alyze them statistically. One source of this background is
compact binary coalescences or CBCs, which are binary
systems of neutron stars and/or black holes[11]. CBCs
coalesce because gravitational waves carry energy away
from the system, in a three step process consisting of coa-
lescence, merger, and ringdown. As two compact objects
get closer together, the rate at which they orbit each
other increases due to conservation of angular momen-
tum, causing the frequency and amplitude of the emit-
ted gravitational waves to increase as well. The eventual
collision and merging of a CBC produces the strongest
burst of gravitational waves, known as a ”chirp”. This
gravitational wave frequency evolution is determined by
a quantity known as the chirp mass [7], defined as
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Nearby compact binary coalescences are expected to
produce gravitational waves signals strong enough to be
detected individually by second generation GW detec-
tors. We can integrate all contributions from all compact
binary coalescences to define a stochastic gravitational
wave background from CBC sources that may be possi-
ble to detect with cross correlated pairs of detectors such
as Advanced LIGO.

The theory for our CBC model predicts that the
characteristics of the stochastic gravitational wave sig-
nals we expect to detect will largely depend on the
universal binary neutron star formation rate and mass
distribution.[10]. Once LIGO is sensitive enough to ex-
tract these signals from the noise, we can then work back-
wards to estimate these parameters by applying statisti-
cal inference methods to the data. This parameter es-
timation process will work the same way for all SGWB
models, since each one is predicted to have a unique sig-
nal with characteristics dependent on specific parame-
ters. These parameters are rooted in the physics of the
sources, which means that estimating their values will
help us gain a better understanding of the underlying
physics governing the formation and characteristics of
neutron stars, black holes, and other gravitational wave
sources. This research will give us new information about
the properties that govern our universe, including gravity
itself.



II. THEORY

A. Understanding Coalescing Binary Black Hole
Waveforms

The purpose of the following section is to illustrate the
dependence of gravitational wave signal characteristics
on the underlying physical parameters of their sources.
Given an input of binary black hole system parameters
such as mass ratio, radial distance, and observational
distance, a script generated the following time and fre-
quency waveforms to show how the behavior of the sys-
tem changes with various configurations.

1. Varying Mass Ratio

When varying the mass ratio %, I smaller mass ra-

tios result in longer coalescence times, as well as reduced
gravitational wave strain overall. This makes sense, be-
cause the black holes in a two body system orbit around
their common center of mass, known as the barycenter.
If the two bodies are very unequal in size, the barycen-
ter will be very close to the larger body, possibly even
inside it. In this case the larger body does not acceler-
ate as much as the smaller body, resulting in less total
mass acceleration overall. This means that there is not
enough mass accelerating to create strong gravitational
waves, which results in a longer coalescence time, and
decreased gravitational wave strain. Mass ratios closer
to 1 maximize the amount of mass accelerating in the
system, producing gravitational waves with large strain
amplitude. These gravitational waves quickly carry en-
ergy away from the system, causing the two bodies to
rapidly coalesce.
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FIG. 1: Time domain waveform of binary black hole co-
alescence given different mass ratios.

The frequency domain waveform shows that CBCs
with smaller mass ratios have lower frequency during
coalescence, while systems with mass ratios closer to 1

have higher frequencies. It can also be seen that all sys-
tems spend more time at lower frequencies than higher
frequencies, which makes sense because the inspiral and
merger phase of CBCs only lasts minutes, a small fraction
of the total lifespan of the CBC.
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FIG. 2: Frequency domain waveform of binary black hole
coalescence given different mass ratios.

2. Varying Total Mass

When varying the total amount of mass, systems
with greater total mass coalesced more quickly, and had
greater gravatational wave strain overall. Systems with
greater total mass also coalesced at higher frequencies.
This makes sense when considering that gravitational
wave strain is directly proportional to the amount of total
accelerating mass.
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FIG. 3: Time domain waveform of binary black hole
coalescence with varying total mass.
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FIG. 4: Frequency domain waveform of binary black
hole coalescence with varying total mass.

3. Varying Observational Distance

When varying observational distance from the system,
gravitational wave strain decreased for far away CBC sys-
tems. This makes sense because we know that the am-
plitude of a gravitational wave falls off proportional to %,
where r is the system’s distance from the observer due
to gravitational red shifting [12].
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FIG. 5: Time domain waveform of binary black hole co-
alescence with varying observational distance.
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FIG. 6: Frequency domain waveform of binary black hole
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B. Modeling the Stochastic Gravitational Wave
Background

1. Gravitational Wave Energy Density

The stochastic gravitational wave background contains
the distinct signatures of the physical processes that gen-
erated it. All SGWB source models, including CBCs, can
be described by the normalized gravitational wave energy
density,

Qe (f) = pidpdjcw, (2)

which defines the ratio of the model’s gravitational wave
energy density to the critical energy density needed for a
flat universe, that is a universe that follows the rules of
familiar Euclidean geometry[2]. In this equation, dpgw is
the energy density of gravitational waves in the frequency
band f — f 4+ df, and p. is the critical energy density
needed for the universe to be flat.

2. Compact Coalescing Binary Neutron Star Model

Each SGWB model results in a different gravitational
wave spectrum. For example, the gravitational wave
spectrum for the CBC neutron star model is determined
by the rate of binary neutron star system formation
throughout the universe, as well as the mass distribu-
tion [10]. For this model, including only the inspiral part
of the signal, we can write the gravitational wave spec-
trum Qgw as a double integral over redshift z and chirp
mass MC/, as depicted in equation 3 below:
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This equation integrates the contributions of all CBCs
distributed throughout the Universe. The simplified
Qeaw in the second line of equation 3 is obtained by ap-
proximating the first integral in the original Qgw equa-
tion with the average chirp mass M., assuming that the
shape of the chirp distribution has very little effect on the
gravitational wave spectrum at frequencies below LIGO
sensitivity [10]. 7 illustrates a few examples of what this
spectrum looks like for different average chirp mass pa-
rameters.
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FIG. 7: [10] Gravitational wave spectrum Qg example.

The mass fraction parameter X\ is proportional to the
local CBC formation rate per unit comoving volume,
while E(Qpr, Qp,2) = \/Qm(l + 23) + Qp represents the
dependence of the comoving volume on the redshift z
caused by the accelerating expansion of the universe [10].
The term ” comoving volume” refers to a constant volume
obtained by factoring out universal expansion so that we
can work with volumes that do not change over time due
to the expansion of space. We do this so that celestial
objects such as CBCs remain at fixed spacial coordinates
in our calculations [9]. The expansion is taken care of
by a scale factor, which is used to calculate comoving
distances and volumes, as described in [6].

For our purposes, we also assume the Lambda Cold
Dark Matter cosmology model, which says that our uni-
verse contains a A parameter describing the dark energy
that causes accelerating expansion, as well as the cold
dark matter detectable by its gravitational effects on reg-
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ular matter. In addition, we use the flat-A cosmology
values of 0.3 for the mass density parameter €2,,, and
0.7 for the cosmological constant density parameter €2j
[4]. Finally, Ry (z) is the cumulative star formation rate
denisty as a function of redshift z.

The upper limit of the integral in equation 3 depends
on the Qaw (f) frequency range foin t0 fimaz, Where
fmaz 1s the frequency of the last stable orbit before the
merger[8],

1
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and n ~ 0.25 is the reduced mass function assuming equal
masses,

MM (5)
n= (My + My)?"

For this simplified Qgw equation, the prefactor outside
the integral depends on the average chirp mass param-
eter M., which determines the signal strength or ampli-
tude of the gravitational wave energy density spectrum
Qcw. The integrand is dependent on the star forma-
tion density Ry, which determines the distribution of
sources throughout the universe. For my project, we im-
plemented the star formation rate Ry as a fit to the star
formation rate density in Eq.7 of [4]. In addition to being
a function of redshift, Ry is also dependent on the the
parameters ro, W, @, and R, where rg is the local star for-
mation rate in units of Mpc=3yr~—1, and W, Q, and R are
phenomenological parameters which describe the shape
of the star formation rate denisty over redshift z [4],

ro(1 4+ W)eQ?

R

(6)

C. Research Goal

The project goal was to estimate the parameters
M., 9, W,Q, and R of the gravitational wave spectrum
for coalescing binary neutron stars. We are interested in
doing this, because we want to better understand the star
formation rate density which depends on the parameters
ro, W, @, and R, and the neutron star mass distribution,
which depends on the M. parameter. Although obser-
vational astronomy has given us a good idea of the star



formation rate density (see Fig.8), our limited observa-
tional data and physical understanding of the universal
CBC population makes it difficult to be certain of the
true values.
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FIG. 8: Star formation rate density, [3]

D. Using Bayesian Inference to Estimate CBC
Parameters

Bayesian parameter estimation methods use a combi-
nation of prior knowledge and experimental data to make
the best possible inference. It is based on Bayes’ law,

Likelihood Prior
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where 0 represents the parameter to be estimated, such
as average chirp mass M., and D represents the obser-
vational SGWB data gathered from LIGO. We can esti-
mate the model parameter 6,by calculating the Bayesian
posterior distribution Pr(6|D).

As described before, we are interested in estimating
the parameters Mc, r0, W, Q, and R of the gravitational
wave spectrum Qg for coalescing binary neutron stars.

The first step of this process is to calculate the like-
lihood Pr(2|rg), which represents the probability of the
observational data from the LIGO detectors, given the
value of the local star formation rate parameter ry. The
likelihood distribution is expected to be Gaussian be-
cause we calculate (2, the cross correlation estimator for
the measured output of the two LIGO gravitational wave
detectors, by averaging over many short time segments.
For our purposes the likelihood function can be defined
as follows:
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where § denotes the model parameters we wish to esti-
mate (rg in our simplified example), o2 is the varience of
Qi, and 4, is the theoretically expected gravitational
wave energy density given f and the true ”expected”
value for 6. Qrue was derived using predicted values of
the parameters ro, W, @, and R taken from [4]. Because
most SGWB models vary very slowly with frequency, Q
is approximated by computing each {2; over a series of
small 0.25H z frequency intervals f;.

For this research, I wanted clear results showing that
my parameter estimation methods were working. Unfor-
tunately, real LIGO data was too noisy for my first gen-
eration code to work with. Although future progress will
require code sensitive enough to handle real data, for now
it is sufficient to simulate {2 and o;' by using expected
values of the parameters ro, W, @, and R taken from [4],
which I will refer to as the "true” values. When us-
ing a cross correlation estimator derived from real LIGO
data, the true values of the parameters determined by
the physics of the sources will be similarly embedded in
the data, since it will be composed of signals from the
real stochastic gravitational wave background.

In order to get the posterior distribution result, we
multiply the likelihood by the prior, which is the previ-
ously known probability of rg, and divide by the evidence
Pr(Q2) to normalize the result. In this case we begin by
taking the prior to be flat within the range of ry and
zero elsewhere. We don’t include the evidence for now,
because it does not depend on the parameter ry that we
are estimating. The resulting Bayesian posterior distri-
bution can be used to derive confidence intervals for the
6 parameters we are estimating. [10]. A confidence inter-
val gives an estimated range of values which is likely to
include the unknown parameters 5, with this estimated
range being calculated from a set of sample data.

E. Sampling the Likelihood Distribution Using
Markov Chain Monte Carlo Methods

Because parameter estimation requires us to sample
the values of § with the highest likelihoods, sampling
the likelihood distribution turned out to be more difficult
than anticipated. The problem stems from the fact that
there is no obvious way to sample the likelihood with-
out enumerating most or all of the possible states of our
parameters, even in the case where g contains only one
parameter 7o [13]. Since good samples will by definition
tend to come from places in the g space where the likeli-
hood is high, how is it possible to identify g values where
the likelihood is large without evaluating the likelihood
everywhere by brute force? Sampling becomes costly and
inefficient, because the calculation time to sample a dis-
tribution increases exponentially with the dimensionality

1 See ”Simulating Detector Data” (section IV C)



of §. Since the goal is to estimate multiple parameters
at once, it is necessary to use a non-brute force method.
A common solution for a Baysian parameter estimation
dilemma such as this is to use a Markov Chain Monte
Carlo method to generate parameter samples. A Markov
chain is a sequence of random variables that randomly
moves from state to state over discrete units of time,
while the term ”Monte Carlo” refers to a computer gen-
erated algorithm that generates the Markov Chain. The
key idea is to generate a Markov chain for each parame-
ter that converges to the desired probability distribution,
in this case the Qg likelihood distribution in equation
8.

III. RESULTS

All parameter estimation results were obtained with
an MCMC method called the Metropolis-Hastings al-
gorithm?. Every parameter was assigned 100 identical
Markov chain program ”walkers” to sample the parame-
ter space, with each walker given a unique random num-
ber seed to ensure that they would generate independent
samples. After the walkers ran for 600 iterations, their
samples were combined into one dataset of 600,000 values
and plotted as a histogram.

My first test estimated only the ry parameter while
keeping the other phenominological parameters W, Q,
and R constant at their expected values. The following
histogram shows the frequency of the ry samples gener-
ated by my MCMC algorithm for the Qgw likelihood
distribution in equation 8. , for ry values in the range
[4 x 10712 — 6 x 10~ 2] Mpc3yr~".
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FIG. 9: MCMC Parameter estimation of ry parameter.

The histogram for the rg samples in figure 9 resembles
a Gaussian, with a mean value that is very close to the
true value of 5 x 10712 that was injected into the simu-
lated detector data. This result seemed to indicate that
the Metropolis-Hastings algorithm is working.

Next, I sampled all of the four star formation rate pa-
rameters rg, W, @, and R, with each walker sampling all
four values at once. Unlike the previous outcome from
sampling ro alone, the resulting histograms in figure 10
did not converge to clear Gaussian distributions centered
on the true values. This could be because the different
parameter samples are calculated all at once, making it
harder for each individual parameter’s chain to converge
to the likelihood distribution. This issue might be re-
solved with the use of another MCMC algorithm. How-
ever, the most important thing to consider is that when
reviewing each parameter’s histogram result, it is clear
that the mean value is still reasonably close to the true
value of the parameter, which shows again that each pa-
rameter estimation result actually does correctly follow
the likelihood distribution.

2 See Markov Chain Monte Carlo Method()
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FIG. 10: Parameter estimation histograms for samples generated by using a Metropolis-Hastings algorithm to sample
all four star formation rate density parameter spaces at once. The x-axis defines the range of the parameter in question,
while the y-axis shows the frequency at which each parameter value was sampled by the MCMC algorithm. The four
parameters 7o, @, W,and R are used by the star formation rate density function Ry (z) in the integrand of the CBC
model’s gravitational wave energy density spectrum Qgw in equation ?7. Star formation rate energy density influences
the shape of Qg by defining the density of CBC sources throughout the universe for a range of redshift values. The
true parameter values injected into the simulated detector data Q are (ro, @, R, W) =

from the values used for star formation rate SF1 in [4].

Figure 11 is the result of using the calculated mean pa-
rameter estimation values in figure 10 to plot the star for-
mation rate density Ry (z). When comparing this curve
to the Ry (z) curve generated by using the true injected
values (ro,Q, R,W) = (5 x 107'2,3.4,3.8,4.5) in [4], it
is clear that the curves are very similar. This shows
that although the results are not perfect, the Metropolis-
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Hastings MCMC algorithm is functioning correctly.

(5 x 10712,3.4,3.8,4.5), taken
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IV. METHODS

A. Likelihood Calculations

The following is an example of how Gaussian likeli-
hoods can be caluclated for two parameters ¢ and fi, as-
suming a Gaussian normal distribution, and using equa-
tion 9. The CBC likelihood in equation ?? was calcu-
lated using the same methods, with respective variables

replaced.
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To do this, I first created a vector & from 10,000 values
chosen randomly from a normal distribution, with =0
and o = 1. I then created vectors i and & of length N
with ranges from (—1,1) and from (0.5, 1.5) repectively.
The final likelihood value L(Z|f;,0%) for each (uj,ox)
pair, 1 < j,k < N, is the product
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In order to make the likelihoods easier to plot, the log

likelihood was used:
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After calculating the log likelihoods for each (u;, o)
pair, I end up with a matrix of likelihood values, which

I plotted on a 2D contour plot as shown in Fig 12:

)* (11)

log L(x;|f1;,0%) = N log

In Fig. 12, The x and y axis’ are the range of u; and
ok, and the z axis is the likelihood value for this (u;, o)
pair. The highest likelihood occurs when ¢ = 1 and
= 0, which makes sense because the vector ¥ was gen-
erated with these mean and standard deviation values.
This represents the brute force likelihood calculation for
parameter estimation of the two parameters p and o.

Sampling Likelihood Function Using Markov

B.
Chain Monte Carlo Method

I chose to sample the previous likelihood distribution
of the same two variables p and o using an MCMC
method called the Metropolis-Hastings algorithm to gen-
erate samples from a given probability distribution P(z).
This method was extended and altered to generate sam-
ples from the CBC likelihood probability distribution in
equation 8.

The Metropolis-Hastings algorithm is used to generate
a sequence of random samples T from a desired distribu-
tion P(x) for which direct sampling is too difficult or time
consuming. The algorithm does this by starting with an
initial = value z(t), and assuming that we can evaluate
P*(z) for any x. A new state 7 is generated from a pro-
posal density Q(z). To decide whether to accept the new

state x/, we calculate the quantity

P Qi)
P(z(t)) Q(z"; (1))’
where the Q ratio cancels out if the proposal distribution

Q@ is symmetric. If a > 1, then we accept z as the
new state. Otherwise, the new state x is accepted with

( (12)

probability a.



Finally, if " is accepted, we set ' (t+1) = 2. If z is
rejected, we set z(t + 1) = z(t).

The Matlab code implementing the Metropolis-
Hastings algorithm for the previously plotted gaussian
likelihood distribution over p and 6 is included in the
appendix, which shows the algorithm edited to sample
the Gaussian likelihood distribution over two parameters
instead of one, and using the log-likelihood instead of the
original likelihood equation for plotting purposes.

The results below in figure 13 are similar to the results
from doing the brute force likelihood sampling method
in figure 12:

Gauzzian Likslhood

FIG. 13: Likelihood histogram of p and o for a Gaussian
likelihood distribution.

C. Simulating Detector Data

_In order to simulate the cross-correlated detector data
Q, we first need to correctly calculate Qg , the ”true”
gravitational wave energy density based on our theo-
retically expected parameter values of (rg,Q,R,W) =
(5 x10712,3.4,3.8,4.5). These values are taken from the
values used for star formation rate SF1 in [4]. Next, we

calculate oq(f), the standard deviation of )

272 1
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where P(f) is the power spectral density (%) plot-
ted in figure 15, v(f) is the overlap reduction function for
the two LIGO detectors plotted in figure 14, Hy is the
Hubble constant, T is the length of observation time, and
0 f is the frequency step size. Finally, the simulated 2 can
then be calculated by generating a vector of normally dis-
tributed random numbers with mean p = Qagw (f), and
standard deviation o = oq(f).
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FIG. 14: Overlap reduction function y(f) for LIGO Han-
ford and LIGO Livingston detectors
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FIG. 15: Power spectral density curve for Advanced
LIGO.

V. Conclusion and Future Work

Although the above results are promising, they are not
based on realistic input. Unfortunately, none of the re-
sults from my initial runs of the Metropolis-Hastings al-
gorithm converged to the likelihood distribution at all.
In order to get the samples to converge to the results
described previously, I ended up having to simulate the
cross-correlation estimator € again, this time without
any noise. Originally, 2 was calculated as a random vec-
tor with mean values equal to my theoretical Qt:ue and
varience values equal to my simulated &, with ¢ based on



the LIGO noise curve®. Getting rid of the noise means
that € is equal to Qt:ue, which is not ideal for real pa-
rameter estimation using LIGO data,

Even after I took the noise out of €2, it was still neces-
sary to divide the simulated varience ¢ used in 8 by 100
to get clear results. In conclusion, the previous results in
figures 9 and 10 were based on a cross-correlation estima-
tor based on a noiseless () as well as a reduced o. These
problems mean that the Metropolis-Hastings algorithm
needs to be made more sensitive so that it can can sup-
port simulated noise input. It might also be beneficial to

J
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consider using another MCMC algorithm altogether, de-
pending on whether the current algorithm can be altered
to handle realistic data.

VI. Appendix

A. Markov Chain Monte Carlo Implementation
Example

oo

%% Start sampling
while t < T % Iterate until we have T samples
t =t + 1;

% propose new values for mu & sigma from uniform random proposal distribution Q

new.mu = unifrnd( mumin(l) , mu-max(l) ); % mu'
new_sigma = unifrnd( sigma_-min(2) , sigma_max (2) ; % sigma’
log-a = gaussianLikelihood( x, new.mu, new.sigma)-gaussianLikelihood(x,mu,sigma);

if log.a >= 0
% accept state
mu = new.mu;
sigma = new_sigma;
else
% accept state with probability a
u = rand; % get a random number from 0-1
if log(u)<log-a
mu = new.mu;
sigma = new_sigma;
end
end

state(l,t) = mu;
state(2,t) = sigma;

end
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