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Abstract
Core-collapse supernovae (CCSNe) are among the most energetic events in the universe, releasing up to 1053 erg = 100 B of
gravitational potential energy. Based on theoretical predictions, they are also expected to emit bursts of gravitational waves
(GWs) that will be detectable by second-generation laser interferometer GW observatories such as Advanced LIGO (aLIGO),
Advanced Virgo, and KAGRA. In a novel pattern-recognition approach, we investigate the inference of progenitor parameters
from numerical GW signals produced by state-of-the-art rotating core-collapse simulations. After associating physical processes
with characteristic spectrogram features, we develop several machine-learning (ML) algorithms that can accurately (often
within ±20% relative error on average) and precisely determine progenitor parameters from optimally-oriented CCSN signals
located 5 kpc away from Earth. In particular, our ±2σ prediction intervals for βic,b (the ratio of rotational kinetic energy to
gravitational energy of the inner core at bounce) are ∼ 0.03 wide on average at 5 kpc. At a source distance of 10 kpc, we still
achieve average relative errors within ±20% for our mean predictions, though our ±2σ prediction intervals for βic,b become
∼ 0.05 wide. In addition to our hand-picked “physical” feature vector (FV) approach, we also investigate FV constructions with
principal component analysis (PCA) and the scale-invariant feature transform (SIFT). In the future, our analysis could be
implemented in the aLIGO data analysis pipelines to help determine the inner core dynamics of the next galactic CCSN; this
information would otherwise be inaccessible via electromagnetic radiation.

I. Introduction

Towards the end of its hydrostatic-burning phase, a mas-
sive star (i.e. 8 − 10M� . M . 130M� at zero-age main
sequence (ZAMS)) is composed of several concentric shells
that represent its previous burning phases: hydrogen, helium,
carbon, neon, oxygen, and silicon. As the silicon shell burns,
an iron core starts to develop and increase in mass; when
the mass of this core becomes sufficiently large, electron de-
generacy pressure can no longer stabilize the core against
gravitational forces [1]. This triggers the collapse of the inner
core, where material is compressed to supranuclear densities
of ρ & ρ0 ∼ 2.7 × 1014 g/cm3. Due to the low compressibil-
ity of nuclear matter (i.e. the stiffening of the equation of
state) and the repulsive nature of the nuclear force, the inner
core decelerates and starts to “bounce” back; this creates a
hydrodynamic shock wave that propagates outwards until
it collides with the supersonically-infalling outer core (see
Figure 1, adapted from [1]). However, energy losses (e.g. to
disassociation of heavy nuclei in the post-shock region) stall
the shock wave, and the wave must somehow be revived to
pass through the remaining outer core, produce a supernova
(SN), and leave behind a neutron star. If this revival does
not take place, black hole formation will occur instead of a
core-collapse supernova (CCSN).
As one of the most energetic processes in the universe –

releasing 1053 erg = 100 B of gravitational energy, ∼99% of
which is carried away by neutrinos [2] – core-collapse super-
novae (CCSNe) are of high astrophysical significance. How-
ever, while the above description is in general accurate, the
true process that triggers the shock wave’s revival is not well
understood. The actual CCSN mechanism is believed to
be a combination of convection, rotation, neutrino heating,
magnetic fields, and accretion shock instabilities.

To get a better understanding of the core dynamics in-
volved in a CCSN, we can study the gravitational waves
(GWs) emitted. These waves are emitted from dense nuclear
regions that are impenetrable by photons, and carry valuable
information about the progenitor’s parameters and its inner
core’s physical processes. Moreover, unlike electromagnetic
waves, they remain largely unaffected by intervening material
as they travel at the speed of light towards Earth.
Rotating CCSNe are of particular interest to GW as-

tronomers, since the rotation in these progenitors leads to an
oblate deformation of the collapsing core. As this deformed
core passes through the collapse and bounce phases, it un-
dergoes extreme amounts of acceleration that in turn lead to
strong time-varying quadrupole moments. The resulting GW
burst signal from pressure-driven core bounce can therefore
be fairly strong; for rapidly-rotating cores, it can be detected
by second-generation GW detectors out to > 10 kpc [3].

Recent estimates based on historical records of supernovae
and the simulated observability at a latitude of 35◦N suggest
a galactic CCSN rate of 3.2+7.3

−2.6 per century [4]. Given these
chances of observability, it is therefore necessary to develop a
set of tools that will let us analyze a given GW signature from
a CCSN and determine the underlying progenitor parameters.
Unfortunately, core collapse events in general cannot be han-
dled with the same template search methods that have been
successful with binary inspiral mergers, since their resulting
GW strains are dependent on many more variables (e.g. the
equation of state (EOS) and neutrino transport schemes, both
of which are themselves highly parametrized). Since it is cur-
rently not computationally feasible to cover the entire signal
parameter space of CCSNe via numerical simulations, alter-
native parameter estimation and waveform reconstruction
techniques have been developed.
Many of these alternative techniques have focused on the

GW signal from rotating core collapse, as this tends to have
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Figure 1: A schematic representation of the post-bounce shock-
propagation stage that occurs during a core-collapse
supernova. The upper half of this image depicts dy-
namical conditions, with arrows representing velocity
vectors; these indicate a clear shock-wave expansion
against gravitational collapse forces. The lower half
indicates the star’s nuclear composition and nuclear
and weak processes; among these, we find neutrino
bursts that result from the shock wave losing energy to
neutrinos. The horizontal axis gives the enclosed mass
in M�, and the vertical axis shows the corresponding
radii in km (where RFe is the iron core radius and Rν
is the neutrinosphere radius). Figure adapted from [1].

a relatively simple morphology. In particular, the signal
consists of a pre-bounce rise in the strain h, a large spike at
bounce, and a brief (. 10 ms) postbounce ringdown [5] (see,
for example, Figure 3). If we purely consider this rotation-
induced segment of the GW signal, and ignore the ensuing
strains produced from convection, we can also make several
simplifications in our parameter estimation problem. For
instance, Dimmelmeier et al. [6], who considered two finite-
temperature nuclear equations of state, found a fairly weak
dependence of this GW signal on the EOS. Furthermore, a
recent study by Ott et al. [3] established a phenomenon known
as the “universality of rotating core collapse.” Looking at
both 12M� and 40M� progenitors with the same precollapse
rotation rates, Ott et al. found fairly minimal differences
in the spectral GW energy density dEGW/df in the case of
even moderate progenitor rotation. In fact, as Abdikamalov
et al. [5] recently established, the morphology of the rotating
CCSN’s GW signal depends most noticeably on the angular
momentum of the precollapse core.

This relative simplicity of rotating CCSNe has recently been
leveraged by Engels et al. [7] for waveform reconstruction.
After performing singular value decomposition (SVD) on the
Abdikamalov catalog [5] to create a principal component (PC)
basis of strain waveforms, Engels et al. used least-squares
regression to link physical parameters to members of the PC
basis. This allowed for an accurate prediction of waveforms
given a set of physical progenitor parameters. Furthermore, in

the realm of parameter estimation, Abdikamalov et al. were
able to use matched filtering on noisy waveforms from their
own CCSN catalog to infer the total angular momentum of
the inner core at bounce; their mean predictions achieved
relative errors within ±20%, assuming optimally-oriented
progenitors located 10 kpc away from Earth [5]. Edwards
et al. [8] also managed to achieve accurate results on weak
GW CCSN signals by using Bayesian techniques to regress
continuous physical parameters on the PC basis from the
Abdikamalov training catalog. With a separate set of noisy
injection waveforms, they then used their regression model
to fit physical parameters on the posterior means of the PC
coefficients. By applying this technique to waveforms with
low signal-to-noise ratios (SNRs) of 20, they achieved 90%
confidence intervals for βic,b (the ratio of rotational kinetic
energy to gravitational energy of the inner core at bounce)
that were only ∼ 0.06 wide in the case of an unknown arrival
time.

In this paper, we investigate a pattern-recognition/machine-
learning (ML) approach to parameter estimation for rotating
CCSNe. In particular, we analyze the spectrogram-domain
(time-frequency plane) and time-domain waveforms from the
Abdikamalov catalog and identify key visual similarities and
differences between GWs produced via different progenitors.
By developing various image-processing and signal-processing
algorithms to automate this feature-identification process,
and by combining these features into a feature vector (FV),
we are able to simultaneously estimate various progenitor
parameters of a given CCSN GW signal via ML techniques.
Assuming optimally-oriented progenitors located D = 5 kpc
from Advanced LIGO (aLIGO), the mean predictions of our
best-performing algorithms tend to have relative errors within
±20% for most waveforms in the Abdikamalov catalog. Fur-
thermore, our ±2σ prediction intervals for βic,b are ∼ 0.03
wide on average when D = 5 kpc; this width gives a reason-
able estimate of the spread of our predictions due to different
aLIGO noise instantiations. At the fiducial galactic distance
of D = 10 kpc, our average predictions still remain within
±20% of the true parameter values in terms of relative error,
yet the ±2σ intervals for βic,b become ∼ 0.05 wide on average.

In addition to βic,b, we also look into predicting Jic,b (the
total angular momentum of the inner core at bounce), Mic,b

(the total mass of the inner core at bounce), and the degree
of differential rotation. Our results show that Mic,b can be
predicted very accurately (with mean predictions well within
±5% relative error) for progenitors 5 and 10 kpc away, due to
the dense sampling ofMic,b space by the Abdikamalov catalog.
We also find more accurate differential rotation predictions for
higher values of βic,b at D = 5 kpc, due to slight differences in
waveform morphology that occur in rapidly-rotating models.

The aforementioned results were all achieved with our hand-
picked set of seven spectrogram-based and strain-based fea-
tures (e.g. spectrogram “blob” bandwidths), which we will
hereafter refer to as our “physical” feature set. We use the
word “physical” to distinguish our choice of features from that
of (for instance) principal component analysis (PCA), which
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involves unphysical principal components. For completeness,
we also constructed ML feature vectors using both the PCA
of our spectrograms and the scale-invariant feature transform
(SIFT, an image-processing algorithm). The SIFT-based “vi-
sual bag-of-words” technique is popular for object recognition
in real-life images, but it is not sufficiently accurate or precise
for our application, even at D = 1 kpc. On the other hand,
spectrogram-based PCA performs well at D = 1 kpc, but its
predictions are not as accurate or as precise as those of our
physical FV approach at D = 5 kpc.
The remainder of this paper is organized as follows. In

Section II, we describe our GW data, progenitor parameters,
and spectrogram construction procedures. This is followed
by a description of our physical FV construction in Section
III. In Section IV, we discuss our ML algorithm choice, train-
ing/testing procedure, and the details of our random forest
implementation. The main parameter prediction results of
this paper, based on our physical FV and random forest, are
presented in Section V. Lastly, in Section VI, we look into
PCA and SIFT as alternative FV construction methods.

II. GW Data and Preparation

I. Catalog and Physical Parameters

With regards to our strain data, we use the numerically
generated waveforms from Abdikamalov et al. [5]. These
waveforms were generated in axisymmetric (2D) conformally-
flat GR with the CoCoNuT code [9]. For the nuclear physics,
Abdikamalov et al. used the Lattimer and Swesty (LS) EOS
(available for download from stellarcollapse.org) with an
incompressibility parameter of K = 220MeV. For neutrino-
related physics, the parametrized deleptonization scheme of
[6] and neutrino leakage scheme of [3] were employed. Lastly,
due to the universality of rotating core collapse [3], only a
single ZAMS mass of 12M� and solar metallicity (from [10])
is considered.
As for the progenitor variables, the waveforms are

parametrized by five different degrees of differential rotation
(represented by the letter A in [5]) and various initial central
angular velocities Ωc. Assuming a cylindrical rotation law,
the differential rotation parameter A modifies the angular
velocity distribution Ω(s) via the following equation:

Ω(s) = Ωc

[
1 +

( s
A

)2]−1

, (1)

where s is the cylindrical distance from the center of the
progenitor. The differential parameter A was chosen to take
on the following five values: A1 = 300 km, A2 = 417 km, A3
= 634 km, A4 = 1268 km, and A5 = 10000 km. These choices
were made so that, in the inner core (i.e. the inner ∼ 1.5M�)
of the progenitor model used, A1 corresponds to extreme
differential rotation (i.e. Ω changes rapidly with s), whereas
A5 corresponds to more uniform differential rotation [5]. For
the remainder of this report, the Abdikamalov waveforms are

referred to by their degree of differential rotation (A1, A2,
etc) and their Ωc value. For instance, “A1O01” refers to a
waveform with the A1 level of differential rotation and with
Ωc = 1 rad/s.

Instead of predicting Ωc, we choose instead to infer βic,b, the
ratio of rotational kinetic energy T to gravitational potential
energy |W | of the inner core at bounce. As identified in
Abdikamalov et al. [5], this ratio seems to have a more clear
and direct impact on the morphology of a given signal than
A and Ωc individually do (due to degeneracies between the
impacts of A and Ωc). In addition to βic,b, we predict two
other continuous progenitor parameters tabulated in [5]: Jic,b
(the total angular momentum of the inner core at bounce) and
Mic,b (the mass of the inner core at bounce). Both of these
variables tend to positively correlate with βic,b irrespective of
the degree of differential rotation A, as shown in Figure 2.
With regards to estimating the differential rotations of

our waveforms, we decided to switch to a regression-based
approach in place of the discrete classification used in [5] and
[8], since the A values essentially represent various numerical
distance scales. A regression-based approach would also allow
us to simultaneously predict all of our progenitor parameters
(the remainder of which are continuous) via a single ML
regression algorithm.

Given the large range of distances covered by the A values,
it would not make sense to simply determine A via regression,
as interpolating between largely different values would be
difficult. Moreover, according to the cylindrical rotation law
(Equation (1)), the rotation profiles Ω(s) do not tend to
change as much when A is increased from (say) 9000 km to
10000 km, but they do change quite noticeably from 400 to
1400 km. These facts seem to instead motivate a logarithmic
approach. If we take log10 (A/(1 km)) (hereafter referred to
as log10(A) for simplicity), then we get logs of 2.48 (A1), 2.62
(A2), 2.80 (A3), 3.10 (A4), and 4.00 (A5) for our differential
rotations. We can therefore see that log10(A1) and log10(A2)
are separated by around the same amount as log10(A2) and
log10(A3) are. If we correspondingly look at the rotation
profiles in Figure 1 of [5], we can see that the profiles of
A1 and A2 waveforms are visually separated by around the
same amount as the profiles of A2 and A3 waveforms are
from one another (loosely speaking). Thus, when it comes to
considering the physical impact of a given differential rotation
A on the rotation profile, it makes more sense to look at
log10(A) instead.

II. Training and Testing Data

A supervised ML algorithm has to be trained on a set of data
in order to “learn” the associations between multidimensional
feature vectors and their corresponding (known) response
variables (in our case, the progenitor parameters of interest).
In order to evaluate the generalization of such an algorithm,
we must test it on a different set of data and measure the
accuracy of its predictions.
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(a) Jic,b vs βic,b (b) Mic,b vs βic,b

Figure 2: Jic,b and Mic,b vs βic,b for the Abdikamalov catalog’s waveforms. All three variables correlate positively with one another,
irrespective of the degree of differential rotation A.

We therefore split the Abdikamalov waveforms into training
and testing sets. The 92 waveforms that we used for training
were the same ones listed in Table II of [5]; these had Ωc

values separated by 0.5 rad/s for each differential rotation.
The 31 waveforms used for testing our procedure came from
a subset of the injection set in [5] (partly listed in Table III);
we did not consider progenitor masses of 40M� (signified by
“s” in the Abdikamalov catalog), different electron fraction
parametrizations Ye (signified by “m” and “p” in the Abdika-
malov catalog), or non-LS equations of state (i.e. we neglected
the Shen EOS models). These testing waveforms had values
of Ωc that differed from those in the training set by at least
0.25 rad/s.

III. Strain and Spectrogram Data Preparation

To work with our chosen waveforms in the short-time Fourier
transform (STFT) spectrogram domain, we resample them
evenly at a frequency of 8192 Hz using NumPy’s spline lin-
ear interpolation method. This frequency was chosen since
the spectrograms typically contained negligible power den-
sity at frequencies > 4096 Hz; thus, by the Nyquist-Shannon
Sampling Theorem, we would not risk aliasing or lose much fre-
quency information by sampling our data at 8192 Hz. Finally,
to make the waveforms more consistent in their appearance,
we aligned their positive peak at bounce (referred to as h1,pos
in [5]) to the 1s mark, and padded the signals with zeros
until they were all 3s long. This alignment is completely
irrelevant in the eyes of our “physical” feature vector and
SIFT approaches, but is important for PCA (where consistent
positioning of GW signals is important).

One of the most crucial trade-offs in spectrogram analysis is
the uncertainty principle, which applies generally to Fourier-
transform pairs. In our case, the Gabor limit requires that
∆t∆f ≥ 1

4π , where ∆t is the width of time-domain bins in our
spectrogram and ∆f is the bandwidth of frequency-domain

bins. This affects our choice for the NFFT of our spectro-
grams, i.e. the number of samples used in each short-time
Fourier Transform (STFT). Yet another important parameter
is the window function for the spectrogram, which is used
to minimize the effects of spectral leakages and taper each
strain segment at its ends to create a more periodic structure.
Since window functions get rid of information at the tapered
ends, we make use of sliding windows with an overlap.
After looking at a few “toy model” functions such as sine-

Gaussians, we decided to use Kaiser window functions for
the purposes of this investigation. These functions have the
advantage of an adjustable parameter β (not to be confused
with the astrophysical β = T/|W |), which can be used to
finely tweak the narrowness of the window; a value of β = 0
looks similar to a rectangular window, while β = 5 looks
similar to a Hamming window. Decreasing β (i.e. widening
the window) typically produces spectrogram features that are
closer to their true frequencies. However, smaller values of
β also produce artifacts due to spectral leakage. Taking into
account all of these considerations, we tweaked spectrogram
generation parameters for our strain data in order to opti-
mally highlight important features in the GW signals. For a
waveform sampled at 8192 Hz, we found that an NFFT of
16 worked well at capturing time-dependent variations in our
CCSN signals without losing too much frequency resolution
(which ended up being 32 Hz per bin). Moreover, a Kaiser
window with β = 3 and an overlap of 66% sufficiently nar-
rowed the frequency spread of features without introducing
artifacts.

A typical noiseless waveform and STFT spectrogram (gener-
ated with the aforementioned settings) from the Abdikamalov
catalog can be seen in Figure 3; we assume that the source is
optimally oriented and located D = 1 kpc from Earth. At the
beginning of the signal, we see the characteristically sharp
bounce spike associated with the pressure-dominated bounce;
this spike is especially noticeable in this waveform due to
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Figure 3: Strain h+ in the time and spectrogram domains for a
12M� progenitor located 1 kpc away, with differential
rotation A1 and Ωc = 13 rad/s. The units for the
spectrogram’s power density (represented by the color
bar) are in strain2 Hz−1.

the relatively high Ωc of 13 rad/s. After the spike, we see
∼ 10 ms of ringdown, which physically corresponds to the pro-
toneutron star (PNS) dissipating its leftover energy. Lastly,
around the 1.02 s mark, we start to see growing amplitudes
due to prompt convection. Note that we do not see any signs
of the violent, sloshing standing accretion shock instability
(SASI) since this typically occurs hundreds of milliseconds
after bounce [11] – well beyond the Abdikamalov waveforms’
simulation length.
In the spectrogram domain (the lower half of Figure 3),

all of these features manifest themselves as “blobs” with vari-
ous durations and frequency bandwidths, and we can clearly
distinguish the pressure-driven bounce blob from the con-
vection blobs as it is much “taller” (i.e. has a much larger
frequency bandwidth and higher central frequency). These
readily-recognizable features are particularly useful for an
image-processing approach.

IV. Noise Generation

In order to create a noisy GW signal, we scale a clean signal
to the desired progenitor distance D and then add it to
simulated Gaussian Advanced LIGO (aLIGO) detector noise,
where the detector is assumed to be in “zero detuning, high-
power” (ZDHP) mode [12]. To create this noise, we first
generate N points of random Gaussian noise with a mean of
0 and a standard deviation of 1, where N = fst is the number
of samples desired, fs is the sampling rate (in Hz), and t is
the signal length (in s). We then get the FFT of the random
noise and its corresponding frequencies, and then evaluate
the ZDHP power spectral density (PSD) at these frequencies
via spline-linear interpolation. Since these frequencies can be
negative, we take their absolute value before looking at the
PSD. We also give the 9 Hz noise value for frequencies < 9
Hz as there is no available data for any lower frequencies.

After evaluating the ZDHP PSD at the noise frequencies,
we get our coloring spectrum Sc(f). The aLIGO-colored noise
in the frequency domain is then given by

√
Sc(f)× fs/2 times

the FFT of the Gaussian noise, where
√
fs/2 is a normalizing

factor that accounts for our sampling frequency. We then
take the IFFT of this product and discard the imaginary part
to get our Gaussian aLIGO-colored noise in the time domain.

III. Physical FV Construction

In the following subsections, we describe how we arrived
at seven strain-based and spectrogram-based features that
correlated with βic,b – and therefore also with Jic,b and Mic,b

due to Figure 2.

I. Spectrogram-Based Features

As mentioned in [5], most of the information about the rota-
tional parameters of a CCSN is encoded in its pressure-driven
bounce signal, which manifests itself as a large-bandwidth
blob in the spectrogram domain. In particular, if we increase
Ωc while holding A constant as shown in Figure 4, we find
the following trends in our spectrogram:
• The pressure-driven bounce blob becomes more promi-

nent relative to the post-bounce convection blobs.
• The bounce blob’s frequency bandwidth decreases.
• The bounce blob’s central frequency decreases.
• The bounce blob becomes slightly wider (in the time

domain), especially for extreme values of Ωc.
From a signal-processing perspective, the second and third

bullet points agree with the fourth: since the bounce takes
slightly longer as Ωc and βic,b increase, it can be approximated
by a lower-frequency sinusoidal wave. Physically, this means
that CCSNe with larger angular velocities have a slightly
longer bounce, which makes sense given their larger angular
momenta. We can also see that more rapidly rotating CCSNe
have a more powerful bounce blob in the spectrogram domain;
this is just a consequence of their more strongly time-varying
quadrupole moments during the collapse and bounce phases.

Based on this visual trend, we note that an image-processing
algorithm can key in on the “prominence,” bandwidth, central
frequency, and duration of the pressure-driven bounce blob
in order to infer progenitor parameters. However, no clear
correlations could be established between the post-bounce
convection blobs’ shapes and any rotation-specific parameters;
these blobs simply fluctuated too much in bandwidth, time
delay, time duration, and power without obeying any clear
trend. Furthermore, in practice, the (relatively) low-frequency
convection blobs were more susceptible to being wiped out
by noise in the spectrogram domain.

We therefore only have to consider the bounce portion of the
GW signal in the spectrogram domain, as the rest of the signal
does not clearly encode any physical parameters. While this
somewhat limits the efficacy of our image-processing approach,
it also simplifies matters greatly since we only need to focus
on the bounce blob.
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(a) Ωc = 5 rad/s (b) Ωc = 10 rad/s (c) Ωc = 15 rad/s

Figure 4: Strain h+ in the time and spectrogram domains for various different values of Ωc, holding A (the differential rotation
parameter) constant at A1. The units for the spectrogram’s power density (represented by the color bar) are in strain2 Hz−1.

Figure 5: An example of blob detection using our simple binary-
image contour-detection approach. This waveform had
differential parameter A1 and Ωc = 15.25 rad/s. The
contours (in blue) have been overlaid on our original
spectrogram, with axes added for reference.

In order to actually apply image processing techniques on
our waveforms via OpenCV, we treat the spectrograms’ power
density arrays as grayscale images, where rows represent
frequency bins up to 2048 Hz (sufficient in our case) separated
by 32 Hz, and columns represent time bins up to 3.00 s
separated by 3

4096 s. The grayscale intensities of each image
are normalized so that the brightest pixel of each image has
a dimensionless intensity of 255.
Then, to automate the extraction of the bounce blob, we

use a simple binary-image contour-detection algorithm im-
plemented in Python’s OpenCV library [13]. The first step of
this algorithm is to convert our grayscale spectrogram im-
age into a binary image by taking all pixels with intensities
greater than a threshold (empirically determined to be 13)
and setting their intensities to 255. Pixels below this thresh-
old are set to zero. We then apply OpenCV’s findContours()
function, which uses a border-following approach described
by Suzuki et al. [14] to find the contours in a binary image.
As shown in Figure 5 (in the case of a noiseless signal), this
algorithm succeeds at identifying the blobs of interest in our
spectrograms.
After finding the bounce blob, it is straightforward to de-

termine its bandwidth (based on its height) and its central
frequency (via centroiding). In order to calculate the blob’s
power content, however, we choose to find its signal-to-noise
ratio (SNR); this is both dimensionless (unlike the spectro-
gram’s power) and takes on values with reasonable orders
of magnitude. The SNR2 of a blob can be computed by

taking the power data in a spectrogram (which has units
of strain2 Hz−1), multiplying it by 4, and dividing it by the
aLIGO ZDHP PSD (which has units of Hz−1) at each fre-
quency to get a dimensionless result. This is then summed
over all pixels in the blob, and a square root is taken to get
the blob’s SNR.
In noisy signals, the procedure of finding the bounce blob

becomes more complicated. When we add aLIGO-colored
ZDHP Gaussian noise, the noise manifests itself in the form of
long (time-wise), relatively high-power, low-frequency bands
in the spectrogram domain. These “noise blobs” often can
(due to their random appearances) obscure our bounce blob
and thwart our contour-detection algorithms.
In order to get around this limitation, we note that our

bounce blob constitutes a “vertical detail” in our spectrogram,
while the noise was predominately a “horizontal detail” due
to its long time duration. Following this line of reasoning,
we performed a discrete wavelet transform (DWT) in the
vertical direction (hereafter referred to as DWT-V) on each of
our input images, using the PyWavelets package [15]. Each
of these DWT-Vs used the Symlets 4 wavelets, which are
near-symmetric, orthogonal, and have a compact support of
four. Since the detail coefficients of a DWT capture edges
and fine details, while noise is more of a long-lasting band,
this approach ended up being particularly effective at filtering
out noise. However, a single DWT also downsizes an input
image (by ≈ 1

2 in each dimension) due to its recursive nature,
and hence this decreases the time and frequency resolution of
our data even more.

Performing the DWT-V gave us three fairly noise-resistant
features: the SNR, bandwidth (in Hz), and central frequency
(in Hz) of the STFT spectrogram’s tallest DWT-V blob (de-
termined via border-following as before). We also added the
STFT spectrogram’s tallest regular (i.e. non-DWT) blob’s
bandwidth (in Hz) to our feature vector, since we found that
this was not too negatively affected by noise at most distances.
Of course, this bandwidth should correlate with the tallest
DWT-V blob’s bandwidth, but it tends to be numerically
different and has a higher frequency resolution (due to the
DWT-V’s resolution downscaling).
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(a) STFT Spectrogram’s Tallest DWT-V Blob’s SNR
(b) STFT Spectrogram’s Tallest DWT-V Blob’s Bandwidth

(c) STFT Spectrogram’s Tallest Regular Blob’s Bandwidth

(d) STFT Spectrogram’s Tallest DWT-V Blob’s Central Fre-
quency

Figure 6: Our four spectrogram-based features of interest as functions of βic,b for all Abdikamalov training waveforms, across all five
differential rotations. We have chosen D = 1 kpc for our source’s distance and have included ±3σ statistical error bars that
result from twenty different noise instantiations.
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The relations between our four spectrogram-based features
and βic,b are shown in Figure 6. To include the effects of
noise in this figure, we use twenty separate instantiations of
aLIGO noise for each waveform in the catalog, where each
waveform is scaled to D = 1 kpc before adding noise. We
then graph the mean feature values for each waveform with
points, and use translucent shading for ±3σ statistical error
bars to show the expected spread due to noise. While one
could argue that symmetric, ±3σ intervals are a bit excessive,
they do reasonably indicate the kinds of variation we could
expect simply due to randomness in the aLIGO measurement
procedure.

As Figure 6 demonstrates, our spectrogram-based features
seem to depend mostly on βic,b, with significantly less depen-
dence on the differential rotation. We also see the aforemen-
tioned visual trends in our figure. For instance, the tallest
DWT-V blob’s SNR tends to increase with βic,b before mostly
flattening out. In the central frequency graph and the two
bandwidth graphs, we see a decreasing trend for βic,b & 0.05
as mentioned earlier. On the other hand, for βic,b . 0.05, the
bandwidth and central frequency increase with βic,b as the
blob is starting to fade into view on our spectrogram. Unfor-
tunately, for very low values of βic,b, there is no clear trend in
any of these visual features since the bounce blob is too dim
to be seen. This is another important drawback of taking an
image-processing approach to parameter estimation.

II. Strain-Based Features

Since the four aforementioned spectrogram-based features are
not sufficient for an ML algorithm – especially since only one
of them changes monotonically with βic,b – we also include
three additional features that can be determined directly from
the strain h+(t) without image processing.
For example, we can directly use the strain data to get a

sense of “how much” of our entire waveform’s signal is due to
(say) convection, and how much is due to the pressure-driven
bounce. This can be quantized by looking at the signal-to-
noise ratio (SNR) integrand of our training waveforms over
various bands in frequency space, since we expect the pressure-
driven bounce signal to occupy higher frequencies than the
convection signal. The integrand of interest in this case is
given by:

SNRSI = 4

∣∣∣h̃(f)
∣∣∣2

Sh(f)
, (2)

where h̃(f) is the Fourier transform of the strain h(t), Sh(f)
is the one-sided aLIGO ZDHP spectral noise density, and
SNRSI stands for “SNR Squared’s Integrand.” In Figure 7, we
have plotted this integrand as a function of frequency for the
noiseless A1O07 (Ωc = 7 rad/s), A1O12.5 (Ωc = 12.5 rad/s),
and A1O15.5 (Ωc = 15.5 rad/s) waveforms. We can clearly
see the emergence of the pressure-driven bounce in the 400+
Hz band of Figure 7b. Moreover, as we increase Ωc, the peak
corresponding to the pressure-driven bounce shifts towards
lower frequencies. This agrees with what we had seen in the

Figure 8: SNR in various frequency bands for noiseless A1 wave-
forms from the Abdikamalov catalog, as a function of
Ωc. We set D = 1 kpc for these waveforms.

spectrogram domain: the bounce blob’s central frequency
tends to decrease as we increase Ωc (holding A constant).
In order to quantify the amount of signal from each con-

tributing source (e.g. pressure-driven bounce vs. convection)
in each waveform, we split up our frequency domain into
three bands: a 60-200 Hz band for low-frequency neutrino
convection content; a 200-400 Hz band for higher-frequency
prompt convection; and a 400-1100 Hz band that predom-
inantly captures the pressure-driven bounce (although the
bounce sometimes shifted towards frequencies less than 400
Hz). Higher-frequency content was ignored as it was mostly
suppressed by the aLIGO noise PSD. We then performed
Riemann integration on the SNRSI to calculate the SNR2

in each of the three bands, and took the square root of this
result to get a total of three SNR features.

The results of this integration are shown in Figure 8, where
we plot each SNR as a function of Ωc for noiseless A1 wave-
forms, assuming a 1 kpc distance from the source. The
pressure-driven bounce’s gradual emergence can be seen in
the almost monotonic increase of the 400-1100 Hz SNR from
Ωc = 4 rad/s to Ωc = 12 rad/s. At higher values of Ωc,
the bounce signal starts to move into the 200-400 Hz band
instead. We can also see a general (but less clear) increase
in the 200-400 Hz SNR as a function of Ωc. Physically, this
might seem to indicate an increase in prompt convection with
Ωc, but it is more likely that some of the bounce signal is
creeping into the 200-400 Hz band.
The 60-200 Hz band, on the other hand, exhibits very

unclear behavior as a function of Ωc. It’s possible that this
is just the physical truth, i.e. that the neutrino convection
signal is simply too stochastic (in both the time and frequency
domains) for us to extract any meaningful conclusions about
progenitor parameters. On the other hand, it is likely that the
Abdikamalov simulations did not run long enough to resolve
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(a) Ωc = 7 rad/s (b) Ωc = 12.5 rad/s (c) Ωc = 15.5 rad/s

Figure 7: The SNRSI (defined in (2)) as a function of frequency for three A1 (strongly differentially rotating) waveforms from the
Abdikamalov catalog. We set D = 1 kpc. Note that we have not added any noise to the underlying waveforms.

all of the post-bounce convection, and so we simply have
incomplete convection data.
Despite these concerns, the 200-400 Hz and 400-1100 Hz

SNRs are still useful features to use for categorizing our wave-
forms. Moreover, the SNR integrals tend to be very robust to
noise. While the individual integrands (at specific frequencies)
might be less robust to random, Gaussian, aLIGO-colored
noise, the effects of noise tend to “cancel out” reasonably well
when it comes to measuring the integral as a whole.

As our third and final strain-based feature, we looked into
measuring a proxy for the bounce duration. As mentioned
in the previous subsection, the bounce blob became slightly
wider in the time domain, especially for large values of βic,b.
However, we cannot easily measure the bounce blob’s duration
via the STFT spectrogram due to its limited time resolution,
and so we instead use time-domain methods. In order to
tackle noise, we first apply a 20th-order low-pass Butterworth
filter to our signal, with a passband frequency of 1530 Hz
and a stopband frequency of 1800 Hz. This gets rid of some
of the very high-frequency random noise in our strain data
and helps minimize the number of “false peaks” in our strain
signal. Next, we apply a 3rd-order high-pass Butterworth
filter with a passband frequency of ∼ 82 Hz and a stopband
frequency of ∼ 20.5 Hz. This removes most low-frequency,
large oscillations from our strain signal, and helps ensure that
– at points where no CCSN signal was present – the filtered
h(t) was close to zero.
After applying these two filters, we determined the most

negative minimum in the strain, and assumed it was the
negative trough that occurs at bounce time in CCSN signals.
We then found the positive maximum right before this trough,
and assumed that it was the positive peak in h(t) right before
bounce. These points can be seen in Figure 9. As a proxy
for the bounce duration, we then take the time difference
between these two extrema. In general, this algorithm works
well for finding the bounce duration for βic,b & 0.025; for
lower values, it often keys in on unrelated convection extrema
since the bounce signal is too weak.
In Figure 10, we plot our three strain-based features of

interest as functions of βic,b for all differential rotations. Once

Figure 9: Filtering and extrema-finding on a noisy strain signal
(D = 1 kpc) for the A1O04 waveform.

again, we scale our waveforms to D = 1 kpc, use twenty
instantiations of aLIGO noise per waveform, and include ±3σ
statistical error bars.
It is worth noting that, in Figure 10b, for high values of

βic,b (i.e. βic,b ≥ 0.10), there are discrepancies in the 400-
1100 Hz SNR for different differential rotations (holding βic,b
constant). This finding agrees with Figure 9 of [5], where
Abdikamalov et al. noticed that rapidly spinning models
(with βic,b ∼ 0.10) had significant differences in waveform
morphology with different values of A. Specifically, while the
length of the bounce spike (in the time domain) remained the
same for all values of A, more strongly differentially rotating
models had more extreme strain values during the bounce
phase. In our case, this directly corresponds to different values
for the 400-1100 Hz SNR (Figure 10b) for βic,b ≥ 0.10, as well
as slight differences in the tallest DWT-V blob’s SNR (Figure
6a) for the same range of βic,b values. These deviations are
useful in helping us estimate the degree of differential rotation
A for rapidly rotating cores (βic,b ≥ 0.10).
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(a) 200-400 Hz SNR (b) 400-1100 Hz SNR

(c) Bounce Duration

Figure 10: Our three strain-based features of interest as functions of βic,b for all Abdikamalov waveforms, across all five differential
rotations. We have chosen D = 1 kpc for our source’s distance and have included ±3σ statistical error bars that result from
twenty different noise instantiations.

10



Figure 11: The ratio of the 400-1100 Hz SNR to the 200-400 Hz
SNR for waveforms from the Abdikamalov catalog, as
a function of βic,b. We assume D = 1 kpc for our
sources, and have graphed ±3σ statistical error bars
that result from twenty different noise instantiations.

Lastly, we note that our physical feature vector includes the
SNRs of various frequency bands, and these SNRs scale in-
versely with the source’s distance D. This can be problematic
since the extrinsic parameter D then becomes a confounding
variable; multiple waveforms with different distances D and
different inner core dynamics could have similar SNRs. We
can avoid this issue by taking the ratio of our two SNRs in
Figure 10, as this would get rid of the scaling factor D. Unfor-
tunately, as shown in Figure 11, the ratio of the 400-1100 Hz
SNR to the 200-400 Hz SNR has a much more discontinuous
appearance as a function of βic,b. This appearance cannot
be entirely accounted for by the statistical error bars due to
separate noise instantiations, and might partly be a result of
approximate neutrino transport schemes in the Abdikamalov
simulations. Furthermore, if we take this SNR ratio, we end
up losing the mostly monotonic nature of the 200-400 Hz
SNR (as a function of βic,b); this is problematic since mono-
tonic features are preferable to work with when it comes to
estimating βic,b via machine learning. Since we do not want
to sacrifice the smooth and interpolable 400-1100 Hz SNR
feature and the monotonic 200-400 Hz SNR feature, we treat
the 200-400 Hz and 400-1100 Hz SNRs as separate features,
and assume that D will be approximately known through
other astrophysical measurements (which is reasonable for a
CCSN).

IV. ML Algorithm Methods

Due to the nontrivial natures of our features in Figures 6 and
10, it is difficult to analytically propose a multivariate statis-
tical regression (MVSR) model that can map our physical FV
to a set of progenitor parameters. This complication makes
it infeasible to use Markov Chain Monte Carlo (MCMC)
regression methods, as we cannot easily construct an accu-

rate multidimensional posterior distribution to sample from.
Moreover, if we are interested in simultaneously determining
other progenitor parameters – such as Jic,b (the total angular
momentum of the inner core at bounce) or Mic,b (the total
mass of the inner core at bounce) – that do not scale linearly
with βic,b (as shown in Figure 2), a Bayesian approach would
require us to have several different MVSR mappings from a
given feature vector to each parameter. These complications
are avoided by instead using ML methods.

I. Algorithm Choice

A supervised ML regression algorithm works with a set of
training data:

Tn = {(Xi, Yi)}ni=1, (3)

where Xi is a multidimensional feature vector, and Yi is a set
of V corresponding response variables (e.g. βic,b) associated
with that feature vector. This training step varies significantly
from algorithm to algorithm. For a simple nearest-neighbors
(NN) approach, this can involve the construction of a k-d
tree that efficiently partitions M -dimensional feature space
(in our physical FV case, M = 7), allowing us to identify
nearby feature vectors from the training set. For a boosted
decision tree algorithm, this can involve the construction
of several boosted, poorly-performing decision trees; here,
“boosting” refers to a sequential process where later decision
trees focus on classifying training data that earlier decision
trees incorrectly classified. Similarly, for random forests (RFs),
this is just the construction of a forest of decision trees,
where randomization occurs (1) when choosing the feature
for each decision split, and (2) when choosing samples (with
replacement) on which each tree is trained (a technique called
“bootstrap aggregating” or “bagging”). A significantly more
in-depth review of local learning, decision trees, and ensemble
learning can be found in Chapters 13-15 of [16].

After “fitting” our ML regressor/classifier on training data,
the algorithm then makes predictions about the response
variable Ŷ for a test feature vectorX that is not in the training
set Tn. This procedure depends on the chosen algorithm, and
so we considered three separate approaches to determine an
optimal choice: k-nearest-neighbor (k-NN), random forests
(RFs), and random subspaces of k-NN regressors (RS-k-NN).

The k-NN algorithm tends to be good at capturing local
variation in data, as it only considers the k nearest neighbors
toX and can employ inverse-distance-based weightings (where
dimensions are standardized1 to account for different units
and scales). On the other hand, while RF regression can also
be viewed as a weighted neighborhood scheme (as suggested
in Section 1 of [17]), non-negligible weights might be given
to very inaccurate response values Yi from our training set.

1We standardize feature values by subtracting off each feature’s mean
(averaged over the entire training set) and dividing by its standard devi-
ation (over the entire training set). In the testing phase, feature values
are standardized by the same feature means and standard deviations
used for standardizing the training set.
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This renders the RF approach slightly more susceptible to
inaccurate response values.

At the same time, the RF approach has two main benefits
over k-NN: it can account for correlations between response
variables, as well as unbalanced training sets. With regards
to correlations in predicting a set of V variables, k-NN simply
treats the V response variables independently. Specifically, it
just finds the closest k feature vectors to X in the training set
and weights their response variables by Euclidean distance;
thus, factoring out noise, we expect the same prediction re-
sults regardless of whether k-NN separately or simultaneously
determined the V variables. Even if the popular Mahalanobis
distance metric is applied, only correlations between feature
vector components can be accounted for, not those between
response variables. On the other hand, when random forests
deal with V > 1 response variables, they compute the av-
erage reduction in their quality criterion (e.g. mean square
error) across all V outputs to arrive at a splitting criterion
for each node. If the output values for a given feature vector
are correlated, looking at the average reduction in a single
forest (instead of building independent forests) lets us take
into account these correlations. This is advantageous for us
since we know that Mic,b, Jic,b, and βic,b are correlated, and
all three of these are dependent on the rotation profile and
hence log10(A).

Moreover, random forests have a more appropriate method
of dealing with the issue of unbalanced classes. This occurs
when the training data is (1) split unequally among the classes
of interest, and (2) we have reason to believe that this splitting
method is not representative of how real data will actually
be partitioned. In the case of the Abdikamalov training
catalog, we have a relative abundance of strongly differentially
rotating models (e.g. A1) and a relative dearth of uniformly
differentially rotating models (e.g. A5). This is problematic
since it would make our algorithm relatively poor at inferring
log10(A) from uniformly rotating CCSN signals.

This discrepancy in waveform numbers occurs since, while
the training models for each differential rotation are always
separated by ∆Ωc = 0.5 rad/s, models with low to moderate
differential rotation tend to not collapse at large values of Ωc.
Physically, this occurs since – with higher Ωc – uniformly and
mildly differentially rotating models (e.g. A3-A5) have a larger
amount of centrifugal support at the start of a simulation, and
hence do not collapse [5]. But this does not necessarily mean
that CCSNe from strongly differentially rotating progenitors
will occur more frequently in nature, since stellar evolution
might not favor such progenitors.

For the purposes of our ML approach, we want to assume
a uniform prior and consider all differential rotations equally
likely. From the random forest point of view, this is easily
accomplished by re-weighting the priors used for each node’s
splitting criterion. In our case, we re-weight all of the wave-
forms of a given differential rotation A by αmin/α, where
α is the number of training waveforms with differential ro-
tation A and αmin is the lowest value of α. On the other
hand, k-NN cannot really tweak any priors; to account for

unbalanced classes, one must either undersample the majority
class or oversample the minority class [16]. Undersampling
is infeasible since there are three times more A1 waveforms
than A5 ones. Oversampling, on the other hand, involves
synthesizing new feature vectors via the Synthetic Minor-
ity Oversampling Technique (SMOTE) [18], which randomly
interpolates between the nearest same-class neighbors to a
given waveform. While it is already problematic to deal with
unphysical, synthesized data, SMOTE also has the drawback
of only oversampling by integer factors; thus, true equality
cannot be achieved.
To decide between RF and k-NN for our physical FV ap-

proach, we empirically evaluate the aforementioned trade-offs
with the Python ML library scikit-learn [19]. Holding
D constant at 5 kpc, we find that k-NN2 is noticeably less
precise than balanced RF3 in terms of the width of its ±2σ
prediction intervals for most progenitor parameters. Qualita-
tive comparisons between the βic,b predictions of these two
methodologies can be found in Appendix A. Due to RF’s ro-
bustness to noise and aforementioned theoretical advantages,
we therefore focus solely on RF-related results in Section V.

Lastly, we briefly consider the RS-k-NN approach since –
while a single k-NN regressor might do reasonably well – NN
algorithms tend to perform relatively poorly with very-high-
dimensional data due to the so-called “curse of dimensionality”
[16]. Thus, we apply the random subspace (RS) ensemble
learning approach with 150 4-NN regressors trained on 40
randomly chosen training samples (with D = 5 kpc) and
three randomly chosen features each. As shown in Figure 22
of Appendix A, however, the RS-4-NN method actually tends
to undershoot more often at high βic,b values compared to
the usual 4-NN approach, and is overall slightly less accurate.
This seems to suggest that the curse of dimensionality is not a
very significant issue for us. To the contrary, we need all seven
feature vector dimensions to properly distinguish between
training waveforms at all βic,b values, and randomness can
often exclude useful monotonic features.

II. RF Algorithm Implementation

To construct our regression algorithms, we use the
RandomForestRegressor module from scikit-learn. For
our forest parameters, we grow 150 decision trees (as RF does
not overfit) with bootstrap aggregation (“bagging”), max-
imal depth (i.e. nodes expanded until all leaves are pure,
where purity is measured by the mean-square-error (MSE)
quality criterion), and consider all features at each decision
split. To account for correlations, we simultaneously pre-
dict all four progenitor parameters – βic,b, Jic,b, Mic,b, and
log10(A) – with a single random forest. Lastly, we re-weight
our training waveforms’ priors to account for unbalanced dif-
ferential rotation classes, using the aforementioned procedure

2With an optimal case of k = 4, inverse-distance-based weightings,
and 3-nearest-neighbors SMOTE-balancing for log10(A) regression

3Implementation details for RF are outlined in the following subsec-
tion.
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Figure 12: Relative errors in log10(A) prediction with our RF im-
plementation and physical FV. We set D = 5 kpc and
include ±2σ statistical error bars. The gray region
represents points within ±20% relative error.

of assigning a sample weight of αmin/α to each waveform’s
feature-vector/response-variable pair.

As for forming the seven-dimensional feature vectors Xi for
our training data, we use the mean values of all seven features
for each training waveform, averaged over 20 instantiations
of aLIGO ZDHP noise. We choose to use noisy data for our
training procedure since this allows us to be realistic about
how various features (e.g. bandwidths and central frequencies)
are skewed by noise. Our RF regressor is then fitted on these
feature vectors and their corresponding progenitor parameters,
and a forest of decision trees is constructed.

With regards to our test data, we inject each waveform in
the testing set (scaled to the same distance D as the training
set data) in 20 separate instantiations of aLIGO ZDHP noise
in order to simulate actual GW signal measurements. For
each test waveform, we then use the same image-processing
and strain-based methods to construct our seven-dimensional
feature vectors. Our RF algorithm then predicts progenitor
parameters for each feature vector, resulting in twenty predic-
tions for each test waveform. The averages and ±2σ spreads
of these predictions are shown in the following section.

V. Physical FV ML Results

Following our aforementioned procedure with our physical FV
and D = 5 kpc, we arrived at the results in Figures 12 and 13.
Qualitatively speaking, we see that the predicted βic,b values
are consistently close to the true βic,b values (i.e. they are not
biased), with slightly lower discrepancies at very high values of
βic,b (βic,b & 0.17). This trend makes sense since the bounce
blob starts to become more prevalent (relative to noise) for
larger βic,b, and many of our image-based features focus on
describing the parameters of this blob. As for the relative
errors ∆βic,b/βic,b in our predictions, we see that these tend

Quantity ARE @ 5 kpc (%) ARE @ 10 kpc (%)

βic,b 17.2 (1.2) 16.1 (0.4)

Jic,b 7.0 (1.1) 8.3 (0.7)

Mic,b 1.6 (0.1) 1.7 (0.1)

log10(A) 10.8 (0.1) 11.9 (0.1)

Table 1: Average relative errors (as percentages) of various pro-
genitor parameter predictions with our RF approach, at
both D = 5 kpc and D = 10 kpc. These results are
averaged over three runs at each distance D. In paren-
theses, we display the (sample) standard deviation of
each quantity over the three runs.

to be within ±20%, with more accurate predictions at larger
values of βic,b.

The mean prediction relative errors from our Jic,b regres-
sion tend to remain within ±10%, which suggests that our
algorithm does a better job at regressing on Jic,b than it does
on βic,b. Physically, this may result from our chosen features
correlating more closely with the total angular momentum of
the inner core at bounce than with β = T/|W |. Furthermore,
ourMic,b prediction tends to be accurate within ±5% for most
values of the true Mic,b. This can probably be attributed to
how densely sampled our training data models are in Mic,b

space, as shown in Figure 2.
As for our differential rotation predictions, the FV approach

performs more accurately with test waveforms with βic,b &
0.10. If we look at Figure 10b, this makes sense since the
400-1100 Hz SNR is the only feature in our vector that really
distinguishes between the differential rotations (holding βic,b
constant) – and that too only for βic,b & 0.10. We also note
that, while the log10(A) predictions seem to have low relative
errors, the true errors in A are understated by the logarithmic
scale. Thus, even small relative errors can correspond to a mis-
classification. In order to generally improve the performance
of our differential rotation predictions, future simulations will
have to span the log10(A) space more evenly and completely.
After all, it is simply infeasible to precisely interpolate between
five discrete values with random forests. This is especially
an issue with the uniformly-rotating A5 waveforms and their
extremely high A values.

As a more quantitative measure of overall performance, we
take the mean predictions of each quantity (averaged over all
instantiations of a waveform) and take the square root of the
mean-square relative errors (averaged over all test waveforms)
of these mean predictions; for the remainder of this report,
this metric is referred to as the “average relative error” or
ARE. We average these AREs over three runs of our algorithm
at each distance, where each run looks at 20 separate noise
instantiations per test waveform. Our results are tabulated in
Table 1, where we consider both D = 5 kpc and D = 10 kpc.

While these quantitative results for D = 10 kpc seem
promising, it is important to note that the ARE only looks
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(a) βic,b Predictions at 5 kpc (b) βic,b Relative Errors at 5 kpc

(c) Jic,b Predictions at 5 kpc (d) Jic,b Relative Errors at 5 kpc

(e) Mic,b Predictions at 5 kpc (f) Mic,b Relative Errors at 5 kpc

Figure 13: Predictions and relative errors for continuous progenitor parameters with our RF implementation and physical FV. We
have chosen D = 5 kpc for our source’s distance and include ±2σ statistical error bars that result from 20 different noise
instantiations of the test waveforms. The gray region represents points within ±20% relative error.
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Figure 14: Predicted βic,b values (with ±2σ statistical error bars)
for our RF implementation with physical FVs at D =
10 kpc.

at the relative error of the mean predicted value (averaged
over 20 noise instantiations). In other words, it does not
give us a sense of the spread of our predicted values due
to different noise instantiations, and this spread tends to
increase with D. This increase can be seen by looking at
Figure 14, where we set D = 10 kpc and predict βic,b. At
this distance, our predictions retain their levels of accuracy
(on average), but are only precise in the case of rapidly-
rotating models (βic,b & 0.17), where the bounce blob is more
prominent and where some trends (e.g. changes in the bounce
duration) become more extreme. Statistically, the imprecise
performance of our algorithm at 10 kpc makes sense since
many of the trends in our feature vector data can become
obscured by detector noise as our signal gets weaker. Other
progenitor parameter predictions show similar decreases in
accuracy and increases in statistical error when we increase
D to 10 kpc.

To determine how our algorithm’s performance varies with
D, we graphed our predictions’ AREs as a function of D for
six source distances from 5 to 10 kpc. We also graph our
average βic,b prediction imprecision as a function of D; this
latter quantity is measured as the average full width of our
±2σ prediction intervals for βic,b over all 31 test waveforms.
Our results are shown in Figure 15; for each distance, we have
averaged results over three runs of our algorithm.
Figure 15a shows that there is no significant trend in the

ARE of most of our quantities’ predictions as a function of
source distance D. While this seems counter-intuitive, it is
important to remember that our algorithm uses a different
set of training data for each distance D, in order to account
for how feature trends appear different with weaker signals
(e.g. the SNRs inversely scale with D). Since our chosen
physical features still remain mostly interpolable in our train-
ing data, it therefore makes sense that our noisy test data
would yield accurate results on average, even as D increases.
However, the spreading effect of noise becomes clear in Figure

Feature Importance

STFT’s Tallest DWT-V

Blob’s SNR
0.069

STFT’s Tallest DWT-V

Blob’s Bandwidth
0.033

STFT’s Tallest Regular

Blob’s Bandwidth
0.063

STFT’s Tallest DWT-V

Blob’s Central Frequency
0.030

200-400 Hz SNR 0.538

400-1100 Hz SNR 0.109

Bounce Duration 0.157

Table 2: Feature importances computed by scikit-learn for our
RF algorithm. These values are based on training data
with D = 5 kpc, and are only meant to give a qualita-
tive idea of importances; due to randomness, they will
fluctuate slightly from forest to forest.

15b, as our average βic,b imprecision worsens from ∼ 0.03 to
∼ 0.05; similar trends apply to the prediction imprecisions of
other progenitor parameters.

As a final point of interest, we record in Table 2 the feature
importances produced by scikit-learn for our RF algorithm
with D = 5 kpc. A feature’s “importance” in this sense is
directly related to the decision trees constructed for a set
of training data. One can imagine treating the depth (in
a tree) of a feature used as a decision node as a measure
of the relative importance of that feature when it comes to
predicting the response variable; features near the top of a
tree tend to contribute to the final prediction result for a much
larger fraction of test data. Following this line of reasoning,
a feature’s importance in scikit-learn is defined as the
expected fraction of samples whose classifications are aided
by that feature [20]. These importance values are normalized
so as to sum to unity.

Table 2 suggests that, in determining progenitor parameters
via random forests, the 200-400 Hz SNR, 400-1100 Hz SNR,
and bounce duration play the most important roles when it
comes to decision splits. This can be understood by looking
at the relatively non-fluctuating relationships between these
features and βic,b in Figure 10. Moreover, since the 200-400
Hz SNR has a mostly monotonic dependence on βic,b, it makes
sense that its importance would be particularly high; this also
explains the relatively high importance of the monotonically
increasing bounce duration. Spectrogram-based (i.e. bounce-
blob-related) features, on the other hand, tend to have lower
feature importances due to their fluctuations and mostly
nonmonotonic behaviors.
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(a) Average Relative Error
(b) βic,b Average Prediction Imprecision

Figure 15: ARE in all quantity predictions and imprecision of βic,b predictions as a function of source distance, using our RF algorithm
with physical FVs. Values in this figure are averaged over three runs at each distance.

VI. Alternative FVs and Results

In addition to our physical feature vectors, we also consid-
ered two other spectrogram-based FV approaches: principal
component analysis (PCA) and the Scale-Invariant Feature
Transform (SIFT).

I. Spectrogram-Based PCA FVs

Consider an m×n matrix A comprised of m one-dimensional
waveforms (the matrix’s rows) that are all n samples long.
Performing PCA on this data set amounts to constructing
a singular value decomposition (SVD) of A, which in turn
involves factoring A as

A = UΣV T , (4)

where U is a unitary m×m matrix whose columns correspond
to the eigenvectors of AAT , V is a unitary n×n matrix whose
columns correspond to the eigenvectors of ATA, and Σ is
an m× n matrix whose diagonal elements correspond to the
square root of the corresponding eigenvalues. The eigenvectors
in V form an orthonormal basis that spans the catalog of
waveforms used to construct A. These eigenvectors are our
principal components (PCs); typically, they are ranked by
their corresponding eigenvalues, so that the first PC consists
of the most common features in the waveforms. The most
significant p ≤ min(m,n) PCs are then selected, and can be
used to reconstruct an arbitrary one-dimensional waveform h
in terms of just p components via projection.
While PCA has been applied in other CCSN analysis ap-

proaches for model selection [21] and parameter estimation [8],
these approaches have typically focused on one-dimensional
strain signals. In this section, we look into employing PCA

with spectrograms instead. First, we ensure that our strain
signals are aligned as mentioned in Section II, so that our
resulting PCs are temporally coherent. We then take STFT
spectrograms of each noiseless waveform in our training set
(scaled to a chosen distance D), using the same settings men-
tioned earlier. In order to use more convenient dimensionless
units for each STFT spectrogram, we multiply each bin’s
power content by 4.0/Sh(f), where Sh(f) is an analytic ap-
proximation to the aLIGO ZDHP PSD as stated in Equation
4.7 of [22]. An analytic PSD is used to create a smooth image
unaffected by resonances.

We then flatten each waveform’s spectrogram (in row-major
order) into a one-dimensional array, which we append onto our
matrix A. To perform PCA on the noiseless spectrograms in A,
we use scikit-learn’s randomized PCA algorithm [23] with
p PCs; this randomized approach has a faster computation
time than classic PCA’s O(n3) cost (where n is the number
of points in each flattened spectrogram).

We can then PCA transform noisy training waveforms (with
twenty instantiations per waveform), in order to represent
them in terms of just p components; this simply involves a
projection of each waveform onto the orthonormal basis of
our p PCs. If we average these projections over all noise
instantiations, this then gives us a p-dimensional feature
vector for each training waveform, which can be used with an
ML algorithm to predict progenitor parameters.
We once again use random forests for our ML procedure,

with the same implementation details as in Section IV. In
this case, RF is preferable to k-NN since the curse of dimen-
sionality (for large p) can negatively impact NN algorithms,
especially when the p dimensions are of unequal importance
as they are with PCs. For our test data, we take noisy STFT
spectrograms (20 instantiations per waveform again), scale
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(a) PCA-Based 50-Component FV at 1 kpc (b) Physical 7-Dimensional FV at 1 kpc

(c) PCA-Based 50-Component FV at 5 kpc (d) Physical 7-Dimensional FV at 5 kpc

Figure 16: Predicted βic,b vs true βic,b, using both PCA-based FVs and physical FVs. We include results for both D = 1 kpc and D = 5
kpc.
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Figure 17: The tiling of time-frequency-Q space in a QT spec-
trogram. The tiles are spaced linearly in time and
logarithmically in frequency and Q. Figure adapted
from [25].

them by 4.0/Sh(f), flatten them into one dimension, and
PCA transform to get a p-dimensional feature vector. Our
test waveforms must also be aligned as before, since PCA
relies on temporal coherence (in our case, a known bounce
time).
From a qualitative point of view, we found that more PC

components generally led to a better performance in predicting
βic,b. In the end, we decided on p = 50 since we found that
our random forest’s feature importances were on the order of
10−4 when additional PCs were added.

Our results for βic,b prediction with this ML procedure at
D = 1 kpc and D = 5 kpc are shown in Figure 16, placed
side-by-side with the results from our physical FV approach
(similar results qualitatively apply for other progenitor pa-
rameters). We can see that, at D = 1 kpc, the PCA approach
actually performs better in terms of both precision and accu-
racy. However, when we increase D to 5 kpc, PCA becomes
less accurate and significantly less precise. This poor perfor-
mance might result from PCA keying in on noise or other
features (e.g. convection blobs) that are not strongly corre-
lated with our chosen progenitor parameters. It might also
result from the loss of phase information and suboptimal time-
frequency resolutions in spectrograms, which would suggest
that PCA is not entirely suited for spectrogram-only use.

II. SIFT-Based FVs

In the image-processing community, David Lowe’s scale-
invariant feature transform (SIFT) is often used in conjunction
with the “visual bag-of-words” technique to categorize and
(later) recognize real-life objects. SIFT uses a difference-of-
Gaussians (DoG) pyramid approach at various image scales
to identify the high-contrast parts (e.g. edges or corners) of
an image. Keypoints are identified as scale-space extrema
on each of these DoG pyramids. In order to describe these
keypoints in an orientation-independent manner, the SIFT
algorithm determines the overall orientation of a keypoint
based on its pixels’ gradient magnitudes and orientations. The
algorithm then uses a 128-dimensional keypoint descriptor to

Figure 18: Grayscale QT spectrogram of noisy A1O10 waveform
at 1 kpc, with SIFT keypoints overlaid as colored
circles. Axes are logarithmically scaled in frequency
(vertical axis) and linearly scaled in time (horizontal
axis). Note that SIFT keys in on the bounce and
convection blobs, but ignores noise blobs.

store information about keypoint pixels’ gradients relative to
this overall orientation. The interested reader should refer to
Lowe’s original paper [24] for further information on SIFT.
Due to the STFT’s poor time resolution, we chose to use

Q-Transform (QT) spectrograms instead of STFT spectro-
grams. QT spectrograms differ from conventional STFT
spectrograms in that they use non-orthogonal sine-Gaussian
functions with differing quality factors Q as their basis, as
opposed to the orthogonal family of trigonometric functions
used in the STFT. Unlike the STFT, QTs do not have a
rectangular time-frequency tiling. Instead, they have a higher
time resolution at high frequencies, and hence a lower fre-
quency resolution at those frequencies (due to the Gabor
limit). For this reason, they tend to be logarithmically tiled
in frequency space. This tiling can be seen visually in Figure
17.

To bring out convection blobs more (as these tend to be at
low frequencies) and achieve a finer time resolution, we use
logarithmically-spaced frequencies, time bins that are 1/2048 s
long, and Q = 0.2 as parameters for astroML’s wavelet_PSD
function [26]. We then convert our QT spectrogram into
strain2 units by multiplying its powers by 4.0/Sh(f). To
avoid resonances, which can create edges in our spectrogram,
we use the analytic expression for Sh(f) as before. Our
spectrogram is then normalized so that the brightest pixel
has an intensity of 255.
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(a) SIFT-Based 80-Component FV at 1 kpc (b) Physical 7-Dimensional FV at 1 kpc

Figure 19: Predicted βic,b vs true βic,b, using both SIFT-based FVs and physical FVs. We have chosen D = 1 kpc for our source’s
distance and have included ±2σ statistical error bars that result from 20 different noise instantiations of the test waveforms.

We then apply OpenCV’s SIFT algorithm [27] to detect
keypoints. In terms of our SIFT parameters, we use four layers
in each octave (i.e. blur levels for each Gaussian pyramid); a
contrast threshold of 0.005 to keep low-contrast keypoints; an
edge threshold of 80 to keep edge-related keypoints; σ = 0.5
for our Gaussian kernel’s standard deviation at octave 0; and
a maximum of 50 keypoints per image. These parameters
allow SIFT to highlight keypoints related to the bounce and
convection blobs and ignore most noise-related blobs, as shown
in Figure 18 for a noisy A1O10 waveform at 1 kpc.

In order to actually turn the keypoints from each training
waveform into a feature vector, we need to use the “visual
bag-of-words” technique. To do this, we use twenty noise
instantiations per training waveform and create an array of
all of the SIFT descriptors found in these instantiations. We
then group these 128-dimensional SIFT descriptors into 80
clusters using scikit-learn’s k-means clustering algorithm
with k = 80 and default parameters. The centers of these
clusters form a “visual vocabulary” of 80 words that describe
the types of features in our training set; for consistency, we
order our cluster centers by their first dimension.

For each noise instantiation in the training set, we create a
histogram that is 80 bins long. Then, for each SIFT keypoint
found for this instantiation’s QT spectrogram, we find the
nearest neighbor to it from our visual vocabulary and add 1
to the corresponding cluster’s bin. Each histogram is then
normalized by dividing by the square root of its summed
components. For each training waveform, we then have twenty
histograms – one for each noise instantiation. These are
averaged and then renormalized to give an 80-dimensional
feature vector for each waveform.
In our testing phase, we use the same RF ML algorithm

(due to high dimensionality) and create QT spectrograms for
each of twenty noise instantiations per test waveform. The
SIFT keypoints from each spectrogram are used to construct

histograms based on nearest-neighbor binning as before, and
these histograms are normalized to serve as feature vectors.

Our results for βic,b prediction at D = 1 kpc with SIFT are
shown in Figure 19, placed side-by-side with the results from
our physical FV approach at the same distance. While the
predicted βic,b does generally seem to increase with the true
βic,b for βic,b . 0.15, our SIFT-based algorithm is unable to
accurately predict βic,b for rapidly-rotating waveforms. This
might result from a relative dearth of keypoints in rapidly-
rotating models’ spectrograms, since the bounce blob tends
to be much more prominent than any of the convection blobs.
Compared to our physical feature vector construction, we

can also see that the SIFT/“visual bag-of-words” approach is
far less accurate and precise at predicting βic,b, even at the
relatively close distance of D = 1 kpc. This poor performance
occurs for many reasons. For example, SIFT misses out
on the context of keypoints (e.g. relative positions) and is
unable to stitch them together in any meaningful way. In
addition, SIFT is mostly useful for recognizing starkly different
objects (e.g. cars vs bikes) in real-world images, and cannot
be expected to perform well with objects that morph as slowly
as our bounce blob. Lastly, it’s possible that SIFT is thrown
off by convection-blob-related keypoints that do not vary
continuously with βic,b or other progenitor parameters – and
hence cannot be reasonably “interpolated.”

VII. Conclusions

We have presented multiple pattern-recognition/ML ap-
proaches for inferring the progenitor parameters of rotating
CCSNe from GW strain data. Our best-performing algorithm
took advantage of waveform morphology trends in both the
spectrogram and time domains, and used a combination of
image processing and signal processing techniques to extract
features buried in aLIGO noise. By combining these fea-

19



tures into a seven-dimensional feature vector and applying a
random forest machine-learning algorithm, we were able to
simultaneously estimate various progenitor parameters for a
given CCSN. Our predictions were accurate on average at
both D = 5 kpc and D = 10 kpc, with average relative errors
(for the mean prediction) remaining within ±20% for βic,b,
±10% for Jic,b, and ±5% for Mic,b. However, the spread of
our predictions increased noticeably with D; for instance, the
average full width of ±2σ βic,b prediction intervals increased
from ∼ 0.03 at 5 kpc to ∼ 0.05 at 10 kpc.
When it comes to determining differential rotations, our

physical FV approach only really performed accurately for
βic,b & 0.10. This was the point where slight differences
in waveform morphology started to emerge between models
with the same βic,b and different differential rotations. Even
though our procedure performed more accurately with rapidly-
rotating models, it was still difficult to interpolate between
the five discrete log10(A) values presented in the Abdikamalov
catalog. Future simulations will have to cover log10(A) space
more evenly and completely if differential rotations are to be
numerically predicted from actual signals – especially in the
case of near-uniform rotation.
To explore additional image-processing approaches to FV

construction, we also looked into both spectrogram-based
PCA and SIFT. The SIFT-based “visual bag-of-words” tech-
nique was found to be very inaccurate and imprecise at D = 1
kpc. On the other hand, spectrogram-based PCA worked
very well at D = 1 kpc, although its predictions became no-
ticeably less accurate and precise at D = 5 kpc – especially in
comparison to our physical FV approach. Thus, it might be
worthwhile to use PCA at small source distances D, especially
since – at these distances – the diminished impact of noise
makes it easier to determine the signal’s arrival time.
With regards to future work, the pattern-recognition and

ML algorithms that we’ve described in this paper can be
reused to train and test on new rotating core-collapse mod-
els as they become available. By training on newer and
presumably more accurate data, our algorithm will become
better-equipped at inferring parameters from actual rotating
CCSN GW signals buried in aLIGO noise.

VIII. Acknowledgments

I would like to thank my mentors Alan Weinstein and Sarah
Gossan for their support, discussions, comments, and sug-
gested references over the course of my Summer Undergradu-
ate Research Fellowship (SURF) at Caltech. I would also like
to acknowledge the NSF for funding my research.

A. Comparisons of ML Algorithms on
Physical FVs

I. RF vs 4-NN

Qualitatively, the 4-NN algorithm is much less precise than
RF in its predictions at both D = 5 kpc and D = 10 kpc, as
shown in Figures 20 (5 kpc) and 21 (10 kpc).

(a) RF βic,b Predictions at 5 kpc

(b) 4-NN βic,b Predictions at 5 kpc

Figure 20: Predicted βic,b vs true βic,b, using both 4-NN and
RF regressions. We have chosen D = 5 kpc for our
source’s distance and have included ±2σ statistical
error bars that result from 20 different noise instanti-
ations of the test waveforms.
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(a) RF βic,b Predictions at 10 kpc

(b) 4-NN βic,b Predictions at 10 kpc

Figure 21: The same comparison as in Figure 20, but with D =
10 kpc.

II. RS-4-NN vs 4-NN

A qualitative comparison between 4-NN and RS-4-NN is
shown in Figure 22, where we predict βic,b with D = 5 kpc.
Both algorithms perform similarly, although RS-4-NN tends
to be less accurate at predicting βic,b, especially in the case
of rapidly rotating models (specifically, for βic,b & 0.15).

(a) RS-4-NN βic,b Predictions

(b) 4-NN βic,b Predictions

Figure 22: Predicted βic,b vs true βic,b, using both RS-4-NN and
4-NN regressions. We have chosen D = 5 kpc for
our source’s distance and have included ±2σ statis-
tical error bars that result from 20 different noise
instantiations of the test waveforms.
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