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ABSTRACT

The Laser Interferometer Gravitational wave Observatory (LIGO) and Virgo, advanced ground-
based gravitational-wave detectors, will begin collecting science data in 2015. With first detections
expected to follow, it is important to quantify how well generic gravitational-wave transients can
be localized on the sky. This is crucial for correctly identifying electromagnetic counterparts as
well as understanding gravitational-wave physics and source populations. We present a study of sky
localization capabilities for two search and parameter estimation algorithms: coherent WaveBurst, a
constrained likelihood algorithm operating in close to real-time, and LALInferenceBurst, a Markov
chain Monte Carlo parameter estimation algorithm developed to recover generic transient signals with
latency of a few hours. Furthermore, we focus on the first few years of the advanced detector era,
when we expect to only have two (2015) and later three (2016) operational detectors, all below design
sensitivity. These detector configurations can produce significantly different sky localizations, which
we quantify in detail. We observe a clear improvement in localization of the average detected signal
when progressing from two-detector to three-detector networks, as expected. Although localization
depends on the waveform morphology, approximately 50% of detected signals would be imaged after
observing 100-200 deg2 in 2015 and 60-110 deg2 in 2016, although knowledge of the waveform can
reduce this to as little as 22 deg2. This is the first comprehensive study on sky localization capabilities
for generic transients of the early network of advanced LIGO and Virgo detectors, including the early
LIGO-only two-detector configuration.
Subject headings:

1. INTRODUCTION

Advanced ground-based gravitational-wave detectors,
such as the two advanced LIGO observatories [ Harry &
the LIGO Scientific Collaboration (2010)] and advanced
Virgo [ Accadia et al. (2012)], will begin collecting data as
early as 2015. Although the detectors will not operate at
design sensitivity initially, they will operate with enough
sensitivity to possibly detect the first gravitational-wave
transients [ J. Aasi (2013)]. This promises many scien-
tific boons, and accurate waveform reconstruction and
parameter estimation will be key in extracting as much
information as possible from these detections. In par-
ticular, accurate measurements of the sources’ posi-
tions on the sky can help determine their populations,
their distributions, and possible formation mechanisms
[ Dominik et al. (2012); Kelley et al. (2010); Belczyn-
ski et al. (2014)]. Furthermore, accurate sky localiza-
tion will help electromagnetic follow-up to gravitational-
wave transients, which may bring gravitational-wave ob-
servations into astrophysical and cosmological context.
This has been carefully studied for some binary systems
[ Singer et al. (2014)], and possible counterparts have
been proposed [ Metzger & Berger (2012); Barnes &
Kasen (2013)].

Searches for gravitational-wave transients are well mo-
tivated astrophysically. Among them, gravitational
waves generated by compact binary systems are the best
understood, with well studied and modeled waveforms.
Therefore, searches targeting compact binary systems
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employ matched filtering techniques [ Abadie (2012a)].
Although significant effort has been invested in analytical
and numerical studies of expected waveforms from com-
pact binaries[ Ajith et al. (2005, 2011); Damour & Na-
gar (2008); Hannam et al. (2010); Sturani et al. (2010);
J Aasi (2014); Cannon et al. (2013)], some uncertain-
ties still exist, particularly in binary black hole systems
with spin or large eccentricity. Several of the antici-
pated transient sources come with only poorly under-
stood or phenomenological gravitational waveforms, such
as gravitational radiation from core-collapse supernovae
[ Ott (2009)]. These waveforms are typically extremely
difficult to simulate, and in the case of supernovae,
may be subject to stochastic processes that make tem-
plated searches difficult. Other transient gravitational-
wave sources include pulsar glitches, starquakes associ-
ated with magnetars, and cosmic string cusps [ Abadie
(2012b)]. In addition, there is always the possibility
of completely unanticipated signals from currently un-
known sources. Generic transient searches that make
only minimal assumptions on the signal’s morphology
(waveforms, polarizations) are well suited to detect such
sources and, in this way, complement matched-filtering
approaches [ Abadie (2012b)].

In this study, we focus on short-duration (less than one
second) gravitational-wave transients, also referred to as
bursts, which are typically un-modeled or poorly mod-
eled. Moreover, we focus on source localization only,
rather than waveform reconstruction, and attempt to
quantify the expected uncertainties produced by analysis
of gravitational wave data in the early advanced detector
era. In order to assess the performance of our algorithms,
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we use families of ad hoc waveforms as a proxy for what
may accompany astrophysical events [ Abadie (2012b)].

We used three ad-hoc signal morphologies and along
with Binary Black Hole (BBH) coalescences to explore
a wide range of possible signals detectable by generic
burst searches. The ad-hoc morphologies scan the signal
phase-space with templates possessing both small and
large time-frequency areas that span the entire sensi-
tive frequency band of the instruments. Such waveforms
should approximate the localization of signals from pos-
sible burst sources like core-collapse supernovae. De-
pending on the mechanism [ Ott (2009)], their wave-
forms may resemble high-Q sine-Gaussian signals (like
in the acoustic mechanism [ Burrows et al. (2006, 2007);
Ott et al. (2006)]), millisecond-scale Gaussian-like peaks
(as in simulations of the rotating collapse and bounce
in CCSNe [ Dimmelmeier et al. (2008)]) or even white-
noise bursts (if turbulent convection takes place [ Ott
(2009)]). Recent studies have focused on inferring the ex-
plosion mechanism from gravitational waveforms [ Logue
et al. (2012)], although they did not address localization.
Furthermore, using a range of morphologies allows us
to characterize localization for generic signals which may
come from unanticipated sources. This work is analo-
gous to a recent study focusing on binary neutron star
(BNS) coalescences [ Singer et al. (2014)]. Signals from
such systems typically have longer signal durations with
well known broadband waveforms and are targeted more
optimally with matched filter searches [ Abadie (2012a)].

Accurately localizing gravitational wave signals can
shed light on the sources’ distribution across the sky and
possibly lead to identification of counterparts throughout
the electromagnetic spectrum. Again, this has been care-
fully considered for a few scenarious [ Feng et al. (2014);
Evans (2012); Aasi (2014a)] but is difficult to address
for un-modeled bursts. However, accurate characteriza-
tion of gravitational wave localization will naturally in-
form any electromagnetic follow-up effort. [There exist
a host of possible counterparts to generic gravitational
wave bursts. For instance, core-collapse supernovae in
the local universe are expected to produce detectable
gravitational radiation [ Ott (2009)] and will have bright
counterparts throughout the electromagnetic spectrum
as well as in low-energy neutrinos [ Scholberg (2012)].
Superconducting cosmic string cusps are expected to pro-
duce both gravitational [ Aasi (2014b)] and electromag-
netic radiation [ Vachaspati (2008)]. BBH systems may
or may not produce electromagnetic counterparts, de-
pending on the system’s environment. For BBH systems
in a clean environment, gravitational-wave data may be
the only way to study these systems. Furthermore, coin-
cident electromagnetic observations for bursts from un-
known sources will be invaluable in determining the asso-
ciated physical system. Regardless of the source of grav-
itational radiation, electromagnetic and neutrino obser-
vations may place the event in an astrophysical context.

Although several algorithms provide source localiza-
tion estimates, we focus on Coherent WaveBurst (cWB)
[ Klimenko et al. (2005, 2008)], a constrained likeli-
hood algorithm (Section 3.1), and LALInferenceBurst
(LIB) [ Aasi et al. (2013); Veitch et al. (2014); LIGO
Scientific Collaboration, Virgo Collaboration (2014)], a
Markov chain Monte Carlo (MCMC) parameter estima-
tion algorithm (Section 3.2). Previous sky localization

studies for un-modeled bursts used an earlier version of
cWB and investigated networks with three or more detec-
tors [ Klimenko et al. (2011); J. Aasi (2013); Markowitz
et al. (2008); LIGO Scientific Collaboration et al. (2012)].
Furthermore, these studies typically focused on a few
sample waveforms with a few fixed parameter values.
This includes characterizing algorithmic performance as
a function of injection amplitude, for example. We fo-
cus on ensemble averages computed over a population of
events with randomly selected parameters and with the
expected detector configurations for the first two years
of the advanced detector era. In particular, we gener-
ate an astrophysical population of generic burst events
that extends beyond the detectors’ sensitivity limits.
This characterizes the localization capabilities for typical
events, and models the relative frequency of “loud” sig-
nals versus the more common “quiet” signals. This pop-
ulation yields estimates that describe a “typical expected
event” from gravitaional-wave detectors. We present an
analysis of sky localization during the transition from two
detectors (LIGO-Hanford and LIGO-Livingston in 2015)
to three detectors (LIGO-Hanford, LIGO-Livingston and
Virgo in 2016) with expected noise curves made available
by the LIGO and Virgo collaborations [ J. Aasi (2013)].

Unlike many electromagnetic observations,
gravitational-wave source position uncertainties are
very large, typically larger than 100 deg2. Therefore,
gravitational-wave searches produce probability dis-
tributions over the sky, rather than single locations,
from which meaningful quantities are derived. These
probability distributions can have very complicated
shapes, including severe fragmentation and spatially
separated support. A thorough understanding of these
distributions can inform the design of follow-up pro-
grams as well as the choice of which events should be
pursued.

This paper is organized as follows: Section 2 describes
the simulated noise and gravitational waveforms we use
in this study; Section 3 briefly describes the two algo-
rithms we use; Section 4 discusses the observed localiza-
tion capabilities of the two pipelines over the same set
of detected signals; Section 5 describes some systemat-
ics associated with these algorithms and we conclude in
Section 6.

2. DATA PREPARATION

2.1. Noise

We use simulated stationary Gaussian noise through-
out this study. Expected noise curves for the two LIGO
detectors and Virgo are shown in Figure 1, which plots
the curves for LIGO in 2015, 2016 and at design sen-
sitivity as well as Virgo curves in 2016 and at design
sensitivity. The 2015 and 2016 curves were chosen as
the geometric mean of the optimistic and pessimistic es-
timates in [ J. Aasi (2013)], and the actual improvement
in the noise curves will depend on the commissioning of
the detectors. While these curves may not be realized
exactly, they provide a good estimate for the Gaussian
noise expected in the advanced detector era.

Another important source of noise, particularly for
burst searches, is non-Gaussian in nature. These non-
Gaussian artifacts (“glitches”) form a long tail at high
amplitudes, reducing the sensitivity of searches [ J. Smith
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Fig. 1.— Expected amplitude strain noise for advanced detectors
in 2015, 2016 and at design sensitivity. The resonances correspond
to suspension “violin” modes near 500 Hz and “bounce” modes
near 15 Hz. The bounce mode is within the seismic wall for the
LIGO curves.

(2014)]. Because we simulate only Gaussian noise, we
do not have glitches present in our data. However, the
presence or absence of glitches will not affect our study.
For a given event, glitches affect a gravitational-wave ob-
server’s confidence that this particular event is of astro-
physical origin, but will not affect the pipeline’s ability
to localize true astrophysical events.

Furthermore, we do not simulate realistic detector live-
times because we do not attempt to make a statement
about detection rates. Instead, we use one month of
continuous simulated noise for each of the 2015 and 2016
runs.

2.2. Injections

Several signal morphologies were used in an attempt
to simulate a wide range of possible gravitational-wave
transients. While these are not meant to be exam-
ples of actual astrophysical signals (with the exception
of compact binary systems), historically several exem-
plar waveforms have been used to approximate generic

burst events [ J. Aasi (2013); Klimenko et al. (2011);
Markowitz et al. (2008)]. We focus on generic waveform
morphologies because they allow us to test our ability
to localize very different signals without specializing to a
specific source. In this study we use four signal mor-
phologies: Sine-Gaussian (SG), Gaussian (G), White-
Noise Bursts (WNB), and Binary Black Hole approxi-
mants (BBH) with spins (anti-)aligned with the orbital
angular momentum. The parameter ranges were cho-
sen as reasonable given the typical frequencies probed
by burst searches (32− 2048 Hz) as well as the expected
noise curves. The parameters were drawn independently,
and Table 4 lists the exact values used.

In particular, we distribute our injections as if they
were astrophysical, i.e., uniform in comoving volume. In
addition, the quietest signals were chosen to be just be-
low the detector’s maximum sensitivity. This ensures
that the signals recovered were limited by the detector’s
sensitivity rather than an artificial threshold. All popu-
lations were distributed uniformly over the sky and reg-
ularly spaced in time.

As mentioned above, we distribute our injections uni-
formly in comoving volume. This is done using standard
ΛCDM cosmology (Ωm = 0.3, ΩΛ = 0.7). If we take su-
pernova as typical energy scales for un-modeled bursts,
an optimistic upper limit for the energy emitted as grav-
itational waves is EGW ∼ 10−4M�c

2 [ Ott et al. (2006)].
If we assume a energy scale ten times larger is associ-
ated with and isotropically radiated SG with fo = 200
Hz, this yields a horizon distance of ∼ 3.8 Mpc with ad-
vanced LIGO design sensitivity. At this distance, the
difference between volume and comoving-volume is neg-
ligible (∼ 0.1%). Therefore, we distribute SG, G, and
WNB signals uniformly in volume.

Furthermore, because we do not have an exact en-
ergy scale for generic (un-modeled) transient events, it
is difficult to compute a distance. We expect the sig-
nal amplitude to scale inversely with the luminosity dis-
tance, and this can be used to define a distribution over
h2
rss =

∫
dt
(
h2

+ + h2
×
)

given a distribution over distance.
A derivation is provided in the Appendix, but we can
model a uniform-in-volume distribution as

p(DL) ∝ D2
L ⇒ p(hrss) ∝ h−4

rss (1)

BBH systems should be detectable at several Gpc, and
the difference between volume and comoving volume is
non-trivial here (≥ 70%). For the BBH signals, we have a
well defined distance and distribute the signals uniformly
in comoving volume.

2.2.1. Sine-Gaussian waveforms

Sine-Gaussian (SG) waveforms have historically been
used by the LIGO and Virgo Collaborations to simulate
generic bursts [ Abadie (2012b)]. We define our SG wave-
forms according to Equations 2 and 3 . fo is the central
frequency of the Sine-Gaussian; τ is the width in the time
domain. α controls the relative weights between the two
polarizations. This is equivalent to choosing the coordi-
nate system in the wave-frame relative to the Earth-fixed
detector frame.
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h×(t) = sin (α) hrss√
Q(1−cos(2φo)e−Q2 )/4fo

√
π

sin (2πfo(t− to) + φo) e
−(t−to)2/τ2

(2)

h+(t) = cos (α) hrss√
Q(1+cos(2φo)e−Q2 )/4fo

√
π

cos (2πfo(t− to) + φo) e
−(t−to)2/τ2

(3)

2.2.2. Gaussian waveforms

We also inject Gaussian envelops in the time domain
(G), defined by Equations 4 and 5. These can be consid-
ered as limiting cases of SG waveforms in which fo → 0.
However, removing the oscillatory component means the
frequency domain waveform is a Gaussian centered about
f = 0, and the signal is detected essentially by the
Gaussian’s wings. Because the seismic wall in the noise
spectra at low frequencies is very steep, small changes
in Gaussian width can significantly affect detectability.
This and the lower bound on signal duration from the
pipeline’s sampling rate determined the injection popu-

lation’s parameter ranges.

h×(t) = sin (α) hrss√
τ

(
2
π

)1/4
e−(t−to)2/τ2

(4)

h+(t) = cos (α) hrss√
τ

(
2
π

)1/4
e−(t−to)2/τ2

(5)

2.2.3. White-Noise Burst waveforms

Perhaps one of the most generic waveforms we inves-
tigate is the white-noise burst (WNB), defined by Equa-
tions 6 and 7.

h×(t) ∝ e−(t−to)2/τ2 ∫
e−2πift[Θ(f − fmin)−Θ(f − fmax)] df (6)

h+(t) ∝ e−(t−to)2/τ2 ∫
e−2πift[Θ(f − fmin)−Θ(f − fmax)] df (7)

The flat frequency domain component is randomly
drawn from Gaussian white noise rather than a truly
flat curve. All parameters besides hrss are drawn first,
including this randomly sampled frequency domain wave-
form, and then the amplitude is scaled appropriately to
obtain the desired hrss. These signals are meant to simu-
late an excess of power randomly distributed within some
frequency band and localized in time.

2.2.4. Binary Black Hole waveforms

We simulate the inspiral of massive binary systems be-
cause they coalesce at relatively low frequencies. This
means that the signal is relatively compact in the fre-
quency domain, and generic burst searches can more eas-
ily detect these signals compared to lighter systems. We
expect burst searches to have sensitivity to Binary Black
Hole (BBH) coalescence at cosmological distances.

We use Inspiral-Merger-Ringdown (IMR) phenomeno-
logical approximants to model BBH coalescence [ Ajith
et al. (2011); Hannam et al. (2010)]. These waveforms
are constructed by stitching analytic post-Newtonian ex-
pansions, accurate to 3.5 PN orders, with numerical-
relativity results for merger and analytic quasi-normal
modes for ringdown. Typically, the inspiral portion of
the waveform is known much more accurately than the
merger and ringdown. However, our BBH signals contain
massive components and their mergers occur within the
detector’s sensitive band.

Importantly, our simulated waveforms also incorporate
the affects of spin-orbit coupling. We focus on spins
(anti-)aligned with the orbital angular momentum, so
there is no spin-precession in these waveforms. There is
still uncertainty about the efficiency of common envelop
evolution and the relative importance of supernova kicks

[ Belczynski et al. (2014)], and astrophysical BBH sys-
tems may or may not have their spins (anti-)aligned with
the orbital angular momentum. However, this is a rea-
sonable assumption when characterizing our algorithms’
performance.

We use a range of component masses consistent with
stellar mass black holes. We also simulate a wide range
of spin magnitudes for each object.

3. LOCALIZATION PIPELINES

The goal of sky localization of gravitational-wave tran-
sients is to construct a posterior probability distribution
over the sky. We use two pipelines to localize signals: Co-
herent WaveBurst (cWB) and LALInferenceBurst (LIB).
Each pipeline attempts to reconstruct the signal’s sky
position in a different way, which we briefly describe.

3.1. Coherent WaveBurst

Coherent WaveBurst (cWB) is a data analysis algo-
rithm for the detection of transient gravitational-wave
signals (bursts) [ Klimenko et al. (2005, 2008)]. In cWB,
burst events are identified as excess power patterns, ex-
ceeding some threshold, in the time-frequency domain
obtained via a wavelet transformation. Assuming Gaus-
sian noise, cWB combines data from multiple detectors
to compute a constrained likelihood functional depen-
dent on the sources sky position. For networks with
two or three detectors, strong degeneracies exist in the
likelihood and cWB applies several ad-hoc constraints
to limit the signal space. The constrained likelihood is
maximized over all possible gravitational-wave signals for
each point in the sky, and several statistics are computed
at each point. cWB generates maps by combining these
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statistics, which are used to approximate posterior prob-
ability distribution over the sky [ Klimenko et al. (2011)].
Previous studies [J. Aasi (2013); Klimenko et al. (2011)]
used an earlier version of cWB. We present results from
an updated version of the algorithm, referred to as the
second-generation: cWB-2G [ Klimenko (2014)].

Importantly, this study implements an effective prior
on the source position in Earth-fixed coordinates. This
is the first implementation of such prior for burst detec-
tion algorithms, which modulate the posterior with the
detectors antenna patterns to incorporate the fact that
quieter signals are more frequent than loud signals. It is,
therefore, more likely a priori to detect signals from parts
of the sky with large antenna patterns. A derivation is
provided in the Appendix.

cWB uses two network constraints (regulators), which
incorporate prior knowledge on how the network re-
sponds to generic gravitational-wave signals. The net-
work response to a signal is constrained by the antenna
patterns; this is used in cWB’s analysis to “regulate” re-
constructed signal waveforms and reduce the algorithms
sensitivity to non-Gaussian noise artifacts. The regula-
tors modify the form of the likelihood functional and can
be thought of as non-trivial priors. In cWB-2G, the
regulators are controlled by the parameters δ and γ. δ
controls the permissible ratios between the contributions
to the likelihood from separate polarizations, and γ acts
as the lower bound on the correlation between the de-
tectors [ Klimenko (2014)]. While the regulators are not
needed to reject background in our simulated Gaussian
noise, they will be used in an actual observing run. Sec-
tion 7.2 describes the exact parameters used.

With two detectors, our choice of regulator settings
force cWB to reconstruct only a single polarization. Be-
cause the Hanford and Livingston detectors are nearly
aligned, they are effectively sensitive to only a single po-
larization [ Klimenko et al. (2011); Sutton et al. (2010)]
and this is a reasonable approximation. The three-
detector regulators are almost, but not quite, turned off.
We discuss the features introduced by the regulators in
Section 5.

While false-alarm rates will depend on the Gaussian
and non-Gaussian noise in an observing run, we chose
detection thresholds for cWB that correspond to a false
alarm rate of 1 per year in historical non-Gaussian noise.
This threshold may not be high enough to claim a confi-
dent detection, but it is likely that events satisfying such
criterion will be of significant interest.

cWB is a low-latency pipeline, typically run as on on-
line search. Posteriors are produced as part of the detec-
tion pipeline, and are available within minutes of record-
ing the data.

3.2. LALInferenceBurst

LALInferenceBurst (LIB) is a Bayesian Markov chain
Monte Carlo parameter estimation algorithm designed
to recover burst signals and estimate some key signal pa-
rameters, including sky position. LIB is based on nested
sampling and shares most of its libraries with LALInfer-
ence, its counterpart for parameter estimation of com-
pact binary coalesces (CBC) [ Veitch et al. (2014)]. A de-
tailed description of nested sampling and its application
to gravitational-wave parameter estimation can be found
elsewhere [ Skilling (2004); Veitch & Vecchio (2010)].

The main difference between the CBC and Burst ver-
sion of LALInference is that, while the CBC version fil-
ters the data using long waveforms that describe the sig-
nal emitted by compact binaries, LIB uses a single SG
waveform. 4 This implies that LIB can not perfectly
match some of the simulated signals considered in this
study, such as WNB and BBH. We expect LIB to per-
form sub-optimally for these signals, while it should still
be able to recognize that a coherent signal is present, and
produce useful sky localization information. We see that
this is indeed the case.

LIB has a larger computational cost than cWB, and
it typically cannot be run as a blind search algorithm.
Instead, LIB is run as a follow-up to pre-selected times,
with typical latencies between hours and days. It pro-
vides flexibility in tuning computational cost and sensi-
tivity. With the configuration used in this analysis, 50%
of the events were processed within two hours. However,
a detection decision can be reached with latencies of a
few minutes. For this study, LIB was run on a subset of
triggers detected by cWB and was not used as a search
pipeline [ Vitale (2014)]. Beside the approximate time of
an event, LIB does not use any data products produced
by cWB.

Because LIB is a template based algorithm, we can put
priors on the (relatively few) parameters that describe
the template. In this work, we put a uniform-in-volume
prior on the template amplitude, p(hrss) ∝ h−4

rss. This
is a more direct way of incorporating the prior knowl-
edge than the effective prior used with cWB, but the
information content is similar. The prior furthermore as-
sumes that sources are uniformly distributed on the sky,
and modulation with the antenna patterns is achieved
only through the prior on signal amplitude. The prior
on other signal parameters was flat with ranges larger
than the injected ranges. Section 7.2 describes the exact
parameters used.

4. RESULTS

While localizing sources using gravitational-wave data
alone is important, past studies have emphasized direct-
ing electromagnetic follow-up [ LIGO Scientific Collabo-
ration et al. (2012); Abadie (2012c)]. Therefore, the met-
rics used to evaluate localization at least tacitly assume
some electromagnetic follow-up program. We present re-
sults for a few standard measures for our simulations of
the early advanced detector era.

Before we investigate the posterior distributions pro-
duced by cWB and LIB, we should understand typical
features of gravitational-wave localization. The major-
ity of sky localization comes from time-of-flight measure-
ments between distantly located detectors. A single de-
tector is sensitive to nearly the entire sky, so it cannot lo-
calize sources well. However, because gravitational waves
travel at the speed of light, the difference in the times of
arrival at spatially separated detectors allow us to trian-
gulate the source location on the sky. Figure 2 sketches a
skymap generated with two detectors, in which the locus
of source positions consistent with the observed time-of-
flight between detectors is a ring. For three detectors,

4 It is possible to also use Gaussians or other short waveforms,
but we do not consider them in this study.
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Fig. 2.— Mollweide projections demonstrating the two basic
statistics used to quantify sky localization: angular offsets and
searched area. (a) The entire posterior with the injected and re-
constructed locations marked. In this example, the difference be-
tween time-of-arrival in the two LIGO detectors (Livingston, LA
and Hanford, WA) was 3 ms. (b) The angular offset is defined
as the smallest angle swept between the injected location and the
reconstructed location (maximum a posteriori), shown here as a
geodesic. (c) The searched area is defined as the area assigned a
probability greater than or equal to the probability assigned to the
injected location. In the figure this is the shaded area.

the locus is reduced to two points, and so on. 5 This tri-
angulation can be thought of as producing a likelihood
in the Bayesian sense. Modulation around the ring is
achieved through knowledge of the antenna patterns and

5 Section 7.4 shows a few sample posteriors produced by each
algorithm with our data set.

TABLE 1
Sample sizes of detected events by morphology and year.

year algorithm
morphology

G SG WNB BBH

2015
cWB 256 1112 769 2488
LIB 256 1112 769 500

2016
cWB 417 677 853 6394
LIB 416 664 851 498

an assumption about the distribution of signal ampli-
tudes. The detector network is simply more sensitive in
some directions than others, which means it can detect
more signals from certain directions. This is included in
the effective prior for cWB and the prior on template
amplitude for LIB. Figure 2(a) demonstrates this with
clear hot spots on the ring, although the entire ring is
visible.

Table 1 shows the number of detected events. We in-
jected roughly 100,000 events for each morphology in
each detector network. The low number of recovered
signals reflects the uniform-in-volume distribution of the
signals, which causes the majority of signals to be very
distant and too quiet to be detectable. Both cWB and
LIB were run over the same events. We use all events
detected by cWB for G, SG, and WNB morphologies in
both years. However, due to the large sample of detected
BBH injections, we randomly select 500 events to pro-
cess with LIB. This gives us an accurate representation
of LIB’s performance with slightly larger errors.

4.1. Angular offset

Perhaps the simplest measure of localization is the an-
gle between the maximum a posteriori and the source’s
position (δθ). Figure 2(b) shows this for a cartoon pos-
terior, and the line represents a geodesic connecting the
injected and reconstructed locations. In this example,
the angle is large because the reconstructed location is
placed on the wrong side of the ring.

Figure 3 shows the observed distributions of this statis-
tic. We use cos(δθ) to highlight grouping around δθ =
0◦, 180◦ corresponding to the true and antipodal posi-
tions of the source, respectively. There is improvement
when transitioning from the two-detector network to the
three-detector network, although it is not drastic. This is
because Virgo is less sensitive than the two LIGO detec-
tors, and many detected events are essentially detected
by only two detectors.

In the 2015 network, both algorithms place signals
close to cos(δθ) = ±1 and produce a desert in between.
This symmetry is due to the nearly aligned antenna pat-
terns for the two LIGO detectors, which makes the an-
tipode degenerate with the correct side of the sky. This
symmetry is a generic feature of the detector’s antenna
patterns and also appears when the morphology is known
a priori [ Singer et al. (2014)]. In the 2016 network, there
is some reduction in the mode near cos(δθ) = −1. We
note that the peak near δθ ∼ 0 is sharper in 2016 than in
2015, however the median value of δθ is actually larger
in 2016 for cWB (∼ 33◦ compared to 23◦ for WNB).
This may be due to the regulators (see Section 5). In
the three-detector network, there is a degeneracy in the
posteriors associated with reflections about the plane de-



7

fined by the three detectors [ J. Aasi (2013); Fairhurst
(2009)]. This degeneracy may be responsible for some
of the antipodal population as well. This can be seen
in the LIB distributions, which show the degeneracy but
also show a decrease in the median δθ in the 2016 net-
work, as expected.

We also note that the general features of source local-
ization by both cWB and LIB do not depend strongly
on the signal morphologies. This is significant, as it sug-
gests that the same localization algorithm can be used to
construct posteriors for generic bursts without waveform-
specific biases.

Typically, we expect cos(δθ) → 1 in the limit of high
SNR. This holds for the three-detector network, in which
the signal is triangulated to the true location, and degen-
eracy from reflections defined by the plane of the detec-
tors are broken by the antenna patterns. However, this is
not the case in the two-detector network. This is because,
even in the limit of high SNR, the two-detector network
cannot break the ring-degeneracy in the posterior. If the
waveform is not known a priori, then it must be recon-
structed. For the two-detector network, different points
along the triangulation ring correspond to different re-
constructed waveforms. However, they all reproduce the
data equally well and the algorithm does not prefer one
location on the ring over another. In fact, only the width
of the ring decreases as SNR increases.

Tables 2 and 3 give cumulative fractions of events with
δθ less than a few exemplar values.

4.2. Searched area

Another measure of source localization is the searched
area. We define this as the area on the sky assigned
a probability greater than or equal to the probability
assigned to the injected location [ LIGO Scientific Col-
laboration et al. (2012)]. If a follow-up algorithm sorts
through an list of pixels ordered by probability, this ap-
proximates the amount of area imaged before finding the
injection. Importantly, the searched area does not ac-
count for spatially separated support in the posterior
distribution. Figure 2(c) demonstrates this statistic as
the shaded area. We can estimate the fraction of events
for which electromagnetic counterparts will be observed
within a given area with a cumulative distribution over
the searched area. 6

Figure 4 shows cumulative distributions of observed
searched areas for all morphologies considered. Impor-
tantly, we see that the searched area improves when mov-
ing from the two-detector network in 2015 to the three-
detector network in 2016, even though the Virgo noise
curve is nearly twice as high as the LIGO curves in 2016.
This can be attributed to a more informative likelihood,
and is true for both algorithms.

We also see that LIB performs much worse than cWB
for WNB signals. This is due to template mis-match
within LIB, which attempts to model all signals with a
single SG template. In fact, LIB assigns a few WNB
signals searched areas equal to the entire sky. This is

6 Another possible observing plan would be to set a confidence
regions, say 50%, rather than a fixed area. We could then deter-
mine the fraction of events with 50% confidence regions containing
less than a given area. We avoid this statement here because the
posteriors produced by cWB and sometimes LIB are poorly cali-
brated (see section 5).

because the random WNB waveform matches so poorly
with the SG template that LIB does not detect the signal.

In 2015, both algorithms perform nearly identically for
both SG and G waveforms. This reflects the fact that we
cannot construct posteriors for burst signals more accu-
rately than a timing ring modulated by the antenna pat-
terns. LIB outperforms cWB for the smallest searched
areas and for SG signals, as expected given the waveform
basis used in LIB. However, the fact that both algorithms
agree over a wide range of searched areas suggests there
is only minimal improvement possible with knowledge of
the actual signal morphology.

In 2016, LIB localizes G and SG signals better than
cWB. This is because LIB uses SG templates to recover
signals, while cWB does not. Therefore, knowledge of
the correct signal morphology can significantly improve
localization in three-detector networks. However the per-
formance between the algorithms is more comparable for
BBH signals.

We also note that WNB are localized consistently bet-
ter than SG, G, or BBH with cWB. This should not
be surprising. A simple Fisher matrix computation like
those in [ Fairhurst (2009, 2011)] shows that, for SG sig-
nals, the expected errors in time-of-flight between detec-
tors should scale as

σ2
t ∼

1

ρ2

(
f2
o + τ−2

)−1
. (8)

τ−1 is related to the signal’s bandwidth, and therefore
we expect high frequency, high bandwidth signals to have
the smallest timing errors. From our injections, WNB
signals will typically have higher frequencies than G and
larger bandwidths than SG. This means they will have
smaller timing errors and narrower triangulation rings.

Tables 2 and 3 give cumulative fractions of events with
searched area less than a few exemplar values. Unlike
cos(δθ), we see a strong decrease in the searched area in
the limit of high SNR in both 2015 and 2016. This is
expected from simple triangulation, and corresponds to
a narrowing of the triangulation ring in the two-detector
case rather than the removal of the ring.

4.3. Extent of the posterior’s support

While the searched area and δθ are good indicators
of the localization, they do not describe the entire pos-
terior. For example, both the searched area and δθ
may be small, suggesting a compact posterior distribu-
tion. However, the little area that is included may be
scattered across the sky, with a small δθ merely fortu-
itous. This could correspond to a very narrow ring in
the two-detector case, with the reconstructed location
placed next to the injected location by chance.

To diagnose the prevalence of such cases, we plot the
maximum angular distances from the injection’s source
to any point in the searched area (δθinj) in Figure 5.
If an electromagnetic follow-up is carried out systemati-
cally over this area, this estimates the separation between
points in the region searched before imaging the source.
In particular, we should be able to determine whether
the posterior has support at antipodal points in the sky,
which are difficult to observe with a single telescope.

Figure 5 shows that there is support near the antipode
for a large fraction of events in 2015. This indicates that
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Fig. 3.— Normalized histograms of cos(δθ), where δθ is the angle between the injected location and the maximum of the posterior. (a,c)
2015 detector network. (b,d) 2016 detector network. (a,b) cWB. (c,d) LIB.
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Fig. 4.— Cumulative histograms of searched areas for (a,c) 2015 HL and (b,d) 2016 HLV; (a,b) cWB and (c,d) LIB. Shaded regions
correspond to 68% confidence intervals.

we will find support all along the degenerate ring mod-
ulated by the antenna patterns, which happens to be on
the other side of the sky a significant fraction of the time.
The lobe near δθinj ∼ 0◦ corresponds to small searched
areas, in which the injection was found quickly before the
searched area included points from the antipodal antenna
pattern maximum.

The three-detector network shows similar structure.
We again see a population of events with small searched
areas, with δθinj ∼ 0◦. Somewhat surprisingly, we see a

large lobe near δθinj ∼ 180◦. This is likely due to a com-
bination of Virgo’s higher noise curve and the reflection
degeneracy visible in the δθ distribution as well (Section
4.1). With fewer than four detectors, these antipodal de-
generacies may be unavoidable for un-modeled signals.

4.4. Fragmentation

Furthermore, the largest angle between points in the
searched area does not tell us about the posterior’s shape.
Support could be placed along a large ring or randomly
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Fig. 5.— Normalized histograms of the largest angle between the source’s true location and any point within the searched area. (a,c)
2015 network. (b,d) 2016 network. (a,b) cWB. (c,d) LIB.

scattered in distant parts of the sky. We call this the
fragmentation of the posterior and attempt to measure
it by counting the number of disjoint regions within a
specified area. For example, if the posterior is split be-
tween a blob and it’s antipode, there are two. This is the
case for the searched area in Figure 2(c).

Figure 6 shows histograms of the number of simply
connected regions within the searched area. There is a
lot of morphology dependence, but a few trends are clear.
G and BBH signals typically have fewer simply connected

regions than SG and WNB signals. For SG signals, this
is because of their strong central frequency and relatively
narrow bandwidth.

The oscillatory waveforms imprinted in the data from
each detector still match relatively well if they are offset
by a small number of cycles, which corresponds to a time-
of-flight error between detectors. This causes periodic
features in the posterior with typical angular scales of
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∆θ ∝ 1/fo.
7 We therefore expect to see parallel rings

in two-detector posteriors, and a nearly regular lattice in
the three-detector posteriors.

We also note that the WNB signals appear to have
fragmentation somewhere between G and SG signals.
This is because the WNB signals have wide ranges for
their bandwidths relative to their central frequencies.
When the bandwidth is comparable to the central fre-
quency, there are no fringe peaks (like a G signal) and
when it is narrow compared to the central frequency
there are fringe peaks (like a SG signal). BBH signals act
similar to G signals because they have relatively broad
bandwidths and are concentrated at low frequencies.

4.5. Direct comparison of posteriors

While all the previous statistics allow us to investigate
the relative performance of cWB and LIB through en-
semble averages, they do not tell us how the sky maps
produced by these two methods compare on an event-
by-event basis. Comparing localization directly for each
event will be important if all algorithms are used to pro-
vide alerts and posteriors to the astronomical commu-
nity.

We first investigate the angular separations between
the maxima a posteriori (MAP). There is remarkable
agreement in the 2015 data, with the median δθMAP

consistently around 8◦. In the 2016 data set there is sig-
nificantly more disagreement, with the median δθMAP as
high as 84◦ for some morphologies.

In addition to the angular separation of the maxima
a posteriori, we examined the intersection and union of
sets of pixels selected by each algorithm. We compute the
ratio of intersection to union (i/u) for pixels selected by
the two algorithms. Specifically, we compute i/u using
50% and 90% frequentist confidence regions. If i/u is
near unity, the maps are very similar and if i/u is close to
zero the maps either select nearly disjoint regions or one
map includes much more area than the other. In 2015,
the median i/u is near 0.5 for both confidence levels.
However, there is significantly less overlap in the three-
detector network, with i/u between 0.2 and 0.3 even for
the 90% confidence region.

We also compute the total size of the spatial support
in each posterior for each algorithm. In both the two-
detector and three-detector networks, LIB typically as-
signs non-zero probabilities to many more pixels than
cWB. We note that cWB typically assigns a lower con-
fidence to the same region surrounding the maximum a
posteriori than LIB. Combining this with the knowledge
that cWB typically includes smaller spatial support in
it’s posterior, we come to the conclusion that LIB pos-
teriors typically are strongly peaked with long tails and
broad spatial support. cWB posteriors are less peaked,
with more uniform probabilities and smaller spatial sup-
port.

Additional studies are underway to understand the
statistics and systematics of sky maps provided by these
methods, not only on injected signals, but also on Gaus-
sian and non-Gaussian noise artefacts.

7 The features are not exactly periodic because the signal may
vary significantly over time scales comparable to 1/fo and the an-
tenna patterns may favor only part of the sky.

4.6. Summation

Tables 2 and 3 present a synopsis of the searched ar-
eas and angular offsets for each morphology and detector
configuration. A few example posteriors are plotted in
Section 7.4.

We should note that, because the sources of un-
modeled burst signals may be unknown, they may not be
distributed uniformly in volume. If one takes an agnostic
view, they may use only the maximum likelihood esti-
mate without our effective prior. For our injection set,
this corresponds to an increase in the median searched
areas because the algorithm no longer searches the ring
according to the antenna patterns. We tested this using
cWB and see that the median searched areas are at least
25% larger (2015 G) without the effective prior, and as
much as 59% larger (2015 SG).

Furthermore, we expect BBH signals to be circularly
polarized. Incorporating this information into the search
should improve the localization. We tested this with
cWB and observed no change in the 2015 data set. This
is because the two-detector regulator values force the al-
gorithm to reconstruct signals with a single polarization,
and knowledge that the signal is circularly polarized adds
nothing. However, in the three-detector network, we see
that the median searched area improves by nearly a fac-
tor of 3, from 112.5 deg2 to 38.0 deg2. With the polariza-
tion constraint, this is comparable to the localization ob-
served with lighter systems using matched filtering tech-
niques [ Singer et al. (2014)]. However, Singer et al.
(2014) focus on different sources than our BBH injection
set and a direct comparison between our results requires
careful consideration.

Customizing gravitational-wave searches to specific
source models may improve our ability to localize them
in the sky in a significant way.

5. SYSTEMATICS

We have investigated several sources of potential sys-
tematics in cWB’s and LIB’s reconstructed sky positions.
These can be roughly classified as “calibration” and “ac-
curacy” biases.

5.1. Posterior calibration

We first study systematics associated with the proba-
bility assigned by the localization algorithms on a pixel-
by-pixel basis. This can be considered a “calibration”
problem with the posterior distributions over the sky.
On average, we expect the confidence region containing
N% cumulative probability to contain N% of the detected
injections.

For cWB we find the calibration of the posterior dis-
tributions to depend strongly on the choice of regulators,
in addition to its dependance on the intrinsic parameters
of the simulated events. The dependance on the reg-
ulators seems to dominate these systematics. We have
seen variation in frequentist confidence levels as large as
50% in both directions, i.e., undercovering and overcov-
ering. For the specific choice of regulators (Section 7.2),
cWB generally underestimates the actual confidence at
low confidence levels and overestimates the actual confi-
dence at very high confidence levels. cWB’s 50% confi-
dence regions contain between 65%-85% of the detected
signals in 2015 and between 65%-75% of detected signals
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Fig. 6.— Fractions of events binned by the number of disjoint regions in the searched area. (a,c) 2015 HL and (b,c) 2016 HLV. (a,b)
cWB. (c,d) LIB. SG signals typically have more modes because they support fringe peaks.

TABLE 2
tabular summary of cWB localization. Statistical error is on the order a few percent.

year 2015 2016
network HL HLV

morphology BBH SG G WNB BBH SG G WNB

fraction (in %)
with searched
area less than

5 deg2 3.1 3.4 3.1 6.2 6.7 9.3 12.0 17.2
20 deg2 11.5 12.7 10.9 17.8 18.9 22.2 28.8 32.5

100 deg2 35.3 37.2 37.1 51.8 47.3 52.3 54.9 61.3
200 deg2 51.6 52.2 49.2 69.7 62.3 66.9 69.1 75.8
500 deg2 75.9 69.2 73.8 86.5 82.2 85.8 84.9 91.2

1000 deg2 89.2 82.2 87.1 95.6 93.1 94.8 95.0 98.0

fraction (in %)
with δθ less
than

1◦ 1.3 1.4 0.8 2.7 3.6 2.8 9.8 10.0
5◦ 12.9 8.5 11.7 13.0 22.6 13.0 29.3 19.0

15◦ 37.2 27.1 33.2 34.1 37.6 26.4 45.8 32.6
45◦ 73.1 61.4 66.0 70.9 61.3 57.3 67.9 59.2
60◦ 79.5 68.4 71.1 74.9 66.7 62.2 71.7 64.7
90◦ 83.1 74.0 75.8 77.9 71.4 67.1 74.3 70.0

median searched area 184.6 deg2 181.6 deg2 209.9 deg2 93.0 deg2 112.5 deg2 91.7 deg2 71.3 deg2 61.3 deg2

median δθ 23.1◦ 31.6◦ 25.7◦ 23.9◦ 27.5◦ 36.7◦ 18.6◦ 33.9◦
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TABLE 3
tabular summary of LIB localization. Statistical error is on the order of a few percent.

year 2015 2016
network HL HLV

morphology BBH SG G WNB BBH SG G WNB

fraction (in %)
with searched
area less than

5 deg2 1.8 4.0 2.3 4.7 8.6 25.5 18.5 10.4
20 deg2 9.4 14.3 7.0 14.2 23.1 47.4 43.0 23.9

100 deg2 31.8 39.0 34.8 35.2 53.8 75.8 73.6 46.8
200 deg2 46.8 52.9 49.2 51.2 65.7 84.6 84.4 59.2
500 deg2 70.2 71.7 72.7 65.1 82.9 92.6 93.3 69.8

1000 deg2 88.2 82.6 89.1 74.9 93.0 94.9 97.4 76.0

fraction (in %)
with δθ less
than

1◦ 1.0 2.1 1.2 2.1 6.2 11.4 12.0 5.5
5◦ 8.6 8.8 11.7 9.5 34.5 31.9 51.4 17.2

15◦ 32.2 25.8 30.1 28.6 54.6 53.8 66.8 31.3
45◦ 66.8 63.7 63.7 61.9 77.1 78.3 83.7 63.6
60◦ 72.8 71.0 68.8 67.2 81.3 81.8 85.8 70.1
90◦ 77.4 75.9 74.2 70.4 83.7 84.6 86.5 76.2

median searched area 238.5 deg2 171.0 deg2 208.4 deg2 180.9 deg2 82.5 deg2 22.2 deg2 31.3 deg2 121.3 deg2

median δθ 26.6◦ 29.4◦ 27.1◦ 30.4◦ 11.1◦ 13.3◦ 4.9◦ 27.5◦
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in 2016, depending on morphology. Because the choice of
regulators will depend on the character of real data, sys-
tematics and the regulators’ impact on localization and
detection efficacy need to be re-evaluated when advanced
LIGO and Virgo will come online. This may include re-
calibration to account for observed systematics.

LIB also shows calibration issues. Its 50% confidence
regions contain between 45%-55% of the detected signals
in 2015 and between 35%-45% of detected signals in 2016,
depending on morphology. LIB’s systematic overestima-
tion of the actual confidence observed in the 2016 data
is due to differences in the population of detected events
and the population expected by LIB’s priors. We have
verified that when detected events sample LIB’s uniform-
in-volume prior, LIB’s posteriors are properly calibrated.
Selection effects in events detected by cWB may result
in such deviations from the assumed prior.

Such calibration issues are not particular to burst
searches, and are observed with localization pipelines tar-
geting binary neutron star coalescences [ Sidery et al.
(2014)]. Although these systematics warrant further in-
vestigation, they do not imply that these algorithms can-
not be used to direct electromagnetic follow-up of grav-
itational wave events. Any observing plan consists of a
set of fields sorted by an ordinal function of their proba-
bility to contain signal. The observing strategy will not
depend on the actual function, as long as it preserves
ordering.

5.2. Bias in reconstructed positions

We also compared the distribution of injected positions
for detected events against their estimated positions. We
expect these distributions to match over an ensemble av-
erage, implying the algorithms typically localize signals
to the same regions of the sky from which they are de-
tected. The injected positions of detected events always
follow the antenna patterns of our network of detectors.
We therefore expect the reconstructed positions to simi-
larly follow the antenna patterns.

Both algorithms behave essentially as expected in the
two-detector case (2015). However, we observe a bias in
cWB’s estimated positions in the three-detector network
(2016). As with the calibration of the posteriors (Section
5.1 ), the size and direction of this bias depends strongly
on the choice of regulators. The estimated sky positions
may be clumped into regions with different shapes than
the injected distributions and may not coincide with the
maxima of the antenna patterns. For the regulators used
in this study, this offset corresponds to between 20◦ and
40◦. This bias is also imprinted on the entire posterior
and not just the maxima. We also note that, when apply-
ing a circular polarization constraint in cWB, the median
searched area improves and the bias is removed. We do
not observe any such bias with LIB, which may partially
account for the increased disagreement with cWB in the
2016 data.

6. CONCLUSIONS

We present a study of gravitational-wave source lo-
calization capabilities for un-modeled signals during the
early advanced LIGO and Virgo detector era. In par-
ticular, we focus on the transition from two operational
detectors in 2015 to three operational detectors in 2016,

and quantify the improvement in localization associ-
ated therewith. In performing this study we used two
different localization algorithms: Coherent WaveBurst
(cWB), a low-latency maximum likelihood algorithm,
and LALInferenceBurst (LIB), a Markov chain Monte
Carlo (MCMC) parameter estimation algorithm. We
used four signal morphologies to explore a wide range
of possible signals detectable by generic burst searches.

We find that, while there is some variation with wave-
form morphologies, 50% of injected signals would be im-
aged after observing 100-200 deg2 with two detectors in
2015. We find that cWB can reduce this to within 60-
110 deg2 in 2016 with low latency, and LIB may reduce
the median searched area to as little as 22 deg2 when the
signal matches the template. Tables 2 and 3 summarize
our findings. While the searched areas may be small, we
should remember that the posterior may be spread across
large portions of the sky, including antipodal points.

Importantly, we also introduce an effective prior on
the source position due to anisotropic antenna patterns
and knowledge of signal amplitude distributions. With
this prior, we find cWB performs comparably to the
full MCMC LIB algorithm in the two-detector configura-
tion (2015) with significantly lower latency. This is true
even for signal morphologies that correspond to LIB’s
templates. However, LIB significantly improves upon
rapid localizations provided by cWB with three detec-
tors (2016) for most of the considered morphologies.

Furthermore, we find that cWB systematically local-
izes WNB signals more accurately than LIB. This is be-
cause cWB makes no assumption on the signal morphol-
ogy while LIB assumes a single SG template. cWB local-
izes WNB signals better than SG or G signals because of
differences in the signal morphologies. We expect high-
frequency or large bandwidth signals to be the better
localized than low-frequency or narrow bandwidth sig-
nals.

We also studied the posteriors produced by cWB and
LIB on and event-by-event basis. We found that the two
agorithms agree on the maximum a posteriori points to
a remarkable degree in 2015, typically to within 8◦. We
find that the selected pixels agree to over 50% in the
two-detector network, but agree significantly less in the
three-detector network. Several considerations lead us to
the heuristic conclusion that LIB posteriors are typically
sharply peaked with long tails and large spatial support.
cWB posteriors are typically less peaked, more uniform
with smaller spatial support.

Finally, we investigate and quantify some systematics
with both methods. Both cWB and LIB show calibra-
tion issues with their posteriors, in that the Bayesian
confidence regions do not correspond to their frequen-
tist counterparts. cWB’s regulators introduce biases in
the reconstructed positions in the 2016 data set, and
in a small fraction of events modulate the posterior so
strongly that the source’s location is outside of the pos-
terior’s support.

We expect templated searches targeting known signal
morphologies to localize signals more accurately than
generic un-modeled searches. When compared to an
analogous study focusing on Binary Neutron Star (BNS)
coalescences [ Singer et al. (2014)], we see that the lo-
calization of BNS signals is indeed more accurate than
generic bursts. However, the generic burst searches pro-
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duce median searched areas that are only a factor of 2-3
larger than BNS median searched areas. In fact, the
median searched areas may be comparable if the actual
burst waveform is known reasonably well in the three-
detector network, such as LIB recovering SG injections.
For circularly polarized signals, cWB can achieve com-
parable results if it assumes the signal is circularly polar-
ized. While this study and Singer et al. (2014) both use
populations distributed uniformly in volume, we inves-
tigate very different signal morphologies. Furthermore,
Singer et al. (2014) estimates the detectors duty cycles in
2016 and occasionally detect events with only two detec-
tors instead of all three. This could cause our estimates
to seem more similar than they really are. However, we
also use a lower false-alarm rate threshold than Singer
et al. (2014), which will increase our error estimates sys-
tematically because we will include quieter events. Any
direct comparison between these studies should include
careful consideration of such differences.

Importantly, we find that telescope networks attempt-
ing to follow up BNS events from advanced gravitational
wave detectors by searching large error areas can search

the comparably sized areas for burst events. Given the
nature of such generic events, electromagnetic observa-
tions will be instrumental in placing gravitational wave
observations in an astrophysical context.

ACKNOWLEDGEMENTS

The authors would like to thank J. Veitch and A. Vec-
chio for comments and suggestions about LIB, W. Farr
for his script to convert MCMC posterior samples into
a pixelated posterior as well as R. Vaulin and R. Lynch
for many useful discussions throughout the course of this
research. The authors also acknowledge L. Price for help-
ful comments when preparing this manuscript and L.
Singer for creating the 2015 Gaussian noise data. LIGO
was constructed by the California Institute of Technology
and Massachusetts Institute of Technology with funding
from the NSF and operates under cooperative agreement
PHY-0757058. This work was also supported from NSF
awards PHY-1205512 and PHY-0855313 to the Univer-
sity of Florida.

REFERENCES

Aasi, J. 2014a, The Astrophysical Journal Supplement Series,
211, 7

Aasi, J., Abadie, J., Abbott, B. P., et al. 2013, Phys. Rev. D, 88,
062001

Aasi, J. e. a. 2014b, Phys. Rev. Lett., 112, 131101
Abadie, J. 2012a, Phys. Rev. D, 85, 082002
Abadie, J. e. a. 2012b, Phys. Rev. D, 85, 122007
—. 2012c, A&A, 541, A155
Accadia, T., Acernese, F., Alshourbagy, M., et al. 2012, Journal

of Instrumentation, 7, 3012
Ajith, P., Iyer, B. R., Robinson, C. A. K., & Sathyaprakash, B. S.

2005, Classical and Quantum Gravity, 22, S1179
Ajith, P., Hannam, M., Husa, S., et al. 2011, Phys. Rev. Lett.,

106, 241101
Barnes, J., & Kasen, D. 2013, The Astrophysical Journal, 775, 18
Belczynski, K., Buonanno, A., Cantiello, M., et al. 2014, The

Astrophysical Journal, 789, 120
Burrows, A., Dessart, L., Livne, E., Ott, C. D., & Murphy, J.

2007, The Astrophysical Journal, 664, 416
Burrows, A., Livne, E., Dessart, L., Ott, C. D., & Murphy, J.

2006, The Astrophysical Journal, 640, 878
Cannon, K., Emberson, J. D., Hanna, C., Keppel, D., & Pfeiffer,

H. P. 2013, Phys. Rev. D, 87, 044008
Damour, T., & Nagar, A. 2008, Phys. Rev. D, 77, 024043
Dimmelmeier, H., Ott, C. D., Marek, A., & Janka, H.-T. 2008,

Phys. Rev. D, 78, 064056
Dominik, M., Belczynski, K., Fryer, C., et al. 2012, ApJ, 759, 52
Evans, P. A. e. a. 2012, The Astrophysical Journal Supplement

Series, 203, 28
Fairhurst, S. 2009, New Journal of Physics, 11, 123006
—. 2011, Classical and Quantum Gravity, 28, 105021
Feng, L., Vaulin, R., & Hewitt, J. 2014, arXiv:1405.6219
Hannam, M., Husa, S., Ohme, F., Müller, D., & Brügmann, B.
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7. APPENDIX

7.1. Injection parameter ranges

Table 4 lists the injection parameter ranges and distributions used. Definintion of the waveform morphologies are
provided in Section 2.

TABLE 4
Injection population parameters

minimum maximum distribution

SG

fo 40Hz 1500Hz

dn ∝ constantQ =
√

2πτfo 3 30
cos (α) 0 1
φo 0 2π

hrss
2015 3.0000 · 10−23Hz−1/2 1 · 10−15Hz−1/2

dn ∝ D2
LdDL ∝ h−4

rssdhrss2016 2.0625 · 10−23, Hz−1/2 1 · 10−15Hz−1/2

G

τ 1ms 10ms
dn ∝ constantcos (α) 0 1

hrss
2015 4.0000 · 10−23Hz−1/2 1 · 10−15Hz−1/2

dn ∝ h−4
rssdhrss2016 2.7500 · 10−23Hz−1/2 1 · 10−15Hz−1/2

WNB

τ 5ms 100ms
dn ∝ constantfo ∼ (fmax + fmin)/2 40Hz 1500Hz

σf ∼ (fmax − fmin)/2 10Hz 500Hz

hrss
2015 4.0000 · 10−23Hz−1/2 1 · 10−15Hz−1/2

dn ∝ h−4
rssdhrss2016 2.7500 · 10−23Hz−1/2 1 · 10−15Hz−1/2

BBH

M1 15 M� 25 M�

dn ∝ constantM2 15 M� 25 M�
S1 0.0 0.9
S2 0.0 0.9

z
2015 10−4 0.2218

dn ∝ dVcomov
dz

dz
2016 10−4 0.33

7.2. Algorithmic parameters

We used version 3481M of the cWB repository, searching for signals with frequencies betwen 32-2048 Hz. Our
detection thresholds were set to ρ = 8.0, netcc= 0.7. While false-alarm rates will depend on the noise in our detectors,
these detections correspond to a false-alarm-rate of 1 yr−1 in historical non-Gaussian noise. Table 5 lists the regulator
values used in this study, which we varied depending on the detector network. We note that the regulators in 2015
force cWB to reconstruct a single polarization, while the regulators in 2016 are almost, but not quite, turned off. The
consequences of δ 6= 0 in 2016 are discussed in Section 5

TABLE 5
CoherentWaveBurst search parameters.

year/network SVN revision No. cWB version flow fhigh ρ netCC δ γ

2015/HL
3481M 2G 32 Hz 2048 Hz 8.00 0.70

−1040 0.5
2016/HLV 0.05 0.5

We ran LIB with three parallel chains with 500 live points each, and estimated noise power spectral densities from
the data separately for each event using 96 seconds near the trigger time. Table 6 list the prior ranges used for LIB’s
SG template.

7.3. Derivation of effective priors

We can write down an astrophysically motivated prior, such as a uniform in co-moving volume distribution. However,
for burst signals, we do not immediately have a good estimate for the distance (D) or the energy scale (E). We can
relate this to the observed data (h) through

E

D2
∝
∫

df f2
(
|h+|2 + |h×|2

)
(9)

To obtain a prior on h, we should marginalize over all possible D and E.
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TABLE 6
LALInferenceBurst prior ranges

log (hrss) fo Q α φ

minimum -53.0 1 Hz 2 0 0
maximum -46.5 1300 Hz 35 2π 2π

distribution p(hrss) ∝ h−4
rss p(fo) ∝ constant p(Q) ∝ constant p(α) ∝ constant p(φ) ∝ constant

p(h,E,D)dhdE dD =p(h|E,D)dh · p(E)dE · p(D)dD (10)

∝ δ
(
h− λ

√
E

D2

)
dh · p(E)dE ·D2dD (11)

(12)

where h2 =
∫

df f2
(
|h+|2 + |h×|2

)
and λ is a proportionality constant. Marginalization yields

p(h)∝
∫

dE p(E)

∫
dDD2δ

(
h− λ

√
E

D2

)
(13)

∝
∫

dE p(E)

∫
dDD2δ

(
D − λ

√
E

h2

)
λ
√
E

h2
(14)

∝h−4λ3

∫
dE p(E)E3/2 (15)

∝h−4 (16)

Because we do not know the actual waveform a priori, we must marginalize over the waveform to compute the
posterior. With a small number of detectors, the likelihood is not strongly peaked around the maximum likelihood
estimate and we can approximate

∫
dh p(h) ∼ h−3

ML (17)

where hML is the maximum likelihood reconstructed signal. This can be approximated by hML ∼
(
F 2

+ + F 2
×
)−1/2

,
where F+,× are the antenna patterns for the entire network in the dominant polarization frame [ Klimenko et al.
(2011); Sutton et al. (2010)]. We then expect the effective prior on (θ, φ) to be something like

peff(θ, φ) =
(
F 2

+ + F 2
×
)3/2

(18)

We observe that this prior improves source localization, although there is only a weak dependence on the actual
exponent used. For most signals, any positive power of the antenna patterns tends to order the pixels in the correct
way to reduce the searched area. However, the posterior’s calibration depends strongly on this exponent. cWB’s
regulators skew it’s calibration and the two affects are difficult to separate.

7.4. Sample posteriors

Figure 7 demonstrates posterior distributions produced by both cWB and LIB for WNB injections. In the two-
detector examples, we can clearly see fringe peaks characteristic of high-frequency, low-bandwidth signals. The two-
detector injection has a central frequency of ∼ 560 Hz, which corresponds to an angular scale of ∼ 10◦. The three-
detector injection has a central frequency of ∼ 350 Hz, which corresponds to ∼ 16◦ between the two LIGO detectors
and ∼ 6◦ between the LIGO’s and Virgo. We also see that LIB and cWB agree, but LIB’s posterior is “fuzzy,”
which we expect due to template mismatch. The three-detector network shows similar fringe structures, although now
we can see the main triangulation ring from the two LIGO detectors modulated by information from Virgo. In the
LIB posterior, we can even see the regular lattice imprinted on neighbouring triangulation rings. We note that the
three-detector posteriors are less similar than the two-detector posteriors, which we discuss in detail in Sections 4.5
and 5.

Figure 8 is analogous to Figure 7, except it shows data from BBH injections. For BBH injections, which have wide
bandwidths relative to their central frequencies, we do not expect fringe peaks. The modulation in the three-detector
network along the single triangulation ring is caused by Virgo. The cWB posteriors clearly demonstrate the increase
in the number of disjoint regions when progressing from the two-detector network to the three-detector network.
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mollweide "geo"

0 0.000208543probability per pixel

(a) cWB 2015 WNBmollweide "geo"

0 3.82693e-05probability per pixel

(c) LIB 2015 WNB

mollweide "geo"

0 0.000896122probability per pixel

(b) cWB 2016 WNBmollweide "geo"

1.03963e-23 0.000335099probability per pixel

(d) LIB 2016 WNB

Fig. 7.— Sample WNB posteriors. (a,c) 2015. (b,d) 2016. (a,b) cWB. (c,d) LIB. An “x” marks the injected location. These are mollweide
“geo” projections. The 2015 injection had SNRs of 8.81, 11.72 and 14.66 for LHO, LLO, and the entire network, respectively. The 2016
injection had SNRs of 13.02, 10.66, 1.65 and 16.91 for LHO, LLO, Virgo and the entire network, respectively.

mollweide "geo"

0 0.000364055probability per pixel

(a) cWB 2015 BBHmollweide "geo"

0 8.65884e-05probability per pixel

(c) LIB 2015 BBH

mollweide "geo"

0 0.000868117probability per pixel

(b) cWB 2016 BBHmollweide "geo"

0 8.2346e-05probability per pixel

(d) LIB 2016 BBH

Fig. 8.— Sample BBH posteriors. (a,c) 2015. (b,d) 2016. (a,b) cWB. (c,d) LIB. An “x” marks the injected location. These are mollweide
“geo” projections. The 2015 injection had SNRs of 11.37, 12.72, and 17.06 for LHO, LLO, and the entire network, respectively. The 2016
injection had SNRs of 14.06, 13.40, 1.85 and 19.51 for LHO, LLO, Virgo and the entire network, respectively.


