Control system in Gravitational Wave Detectors

Koji Arai – LIGO Laboratory / Caltech

Gravitational wave detection
 Laser displacement sensor
 Requires linear displacement detection

Control for measurement
 Laser interferometer = nonlinear device
 Feedback control => linearization

- What is the feedback control?
 - A scheme to monitor and modify output(s) of a system by changing the input(s) depending on the output(s)
- Examples
 - Shower temperature
 - Car driving
 - Tight rope walking

- Air conditioning
- Bike riding
- Inverted bar on a hand

- Imagine what happens
 - If the response is too slow?
 - If the response is too fast?

Elements of a feedback loop

Sensor:

Transducer for displacement-to-voltage conversion

If the sensor is completely linear
 (and has or no frequency dependence)

We don't need feedback control!

In reality:

Sensors, laser interferometers in particular, are nonlinear!

- Enclose the operating point in the linear region
 - => The system recovers linearity
- Was the displacement modified by the feedback?
 - => Precise knowledge of the control system for signal reconstruction

Elements of a feedback loop

$$dx_s = dx - G dx_s$$

$$\Rightarrow dx_s = dx / (1+G)$$

$$\Rightarrow dx = V_{err} (1+G) / H$$

$$dx = V_{fb} A (1+G) / G$$

Open loop transfer function

When G is small:

$$dx_{s} = dx - G dx_{s}$$

$$\Rightarrow dx_{s} = dx / (1+G)$$

$$\Rightarrow dx = V_{err} (1+G) / H$$

$$dx = V_{fb} A (1+G) / G$$

Open loop transfer function

$$G \stackrel{\text{def}}{=} H F A$$

When G is big: e.g. G = 10, 100, or 1000

- When the openloop gain G is >>1, the error signal gets suppressed
- "Wow! our sensor signal became smaller!" Is our system more sensitive now?
 - No. We are just moving the actuator so that the error signal looks smaller.
 The signal and noise are equally suppressed in the error signal.
 Thus the SNR does not change.
- OK... So can we still measure gravitational waves even if the error signal is almost zero?
 - Yes. We should be able to recover the original signal by compensating the effect of the control i.e. (1+G)
 - And we can also use the feedback signal in order to reconstruct the original signal with appropriate compensation i.e. (1+G)/G

- Important difference between
 - "Feedback control for stabilization" and "Feedback control for measurement"
 - Feedback control changes the stabilized motion but reconstructed Disturbance is not modified by the loop* (*if everything is linear)

A deterministic and time-invariant system: H

The system H is LTI (linear & time-invariant) when

$$y_1(t) = H \{x_1(t)\}$$
$$y_2(t) = H \{x_2(t)\}$$
$$\Rightarrow \alpha y_1(t) + \beta y_2(t) = H \{\alpha x_1(t) + \beta x_2(t)\}$$

 We can deal with such a system using Laplace transform (or almost equivalently Fourier Transform)

Time domain vs Laplace (or Fourier) frequency domain

It is easy to convert from an ordinary differential equation to a transfer function

$$rac{d}{dt}\Longrightarrow s$$
 Laplace Transform $\Longrightarrow i\omega=i2\pi f$ Fourier Transform

Laplace Transform

e.g. Damped oscillator

$$m\ddot{x}(t) = -kx(t) - \gamma \dot{x}(t) + F(t)$$

$$ms^{2}X(s) = -kX(s) - \gamma sX(s) + F(s)$$

$$H(s) \equiv \frac{X(s)}{F(s)} = \frac{1}{ms^{2} + \gamma s + k}$$

e.g. Damped oscillator

$$H(s) = \frac{1}{ms^2 + \gamma s + k}$$

$$H(s) = \frac{1}{m} \frac{1}{s^2 + \frac{\omega_0}{Q} s + \omega_0^2}$$

$$H(\omega) = \frac{1}{m} \frac{1}{-\omega^2 + i\frac{\omega_0}{Q}\omega + \omega_0^2}$$

$$\omega_0 = \sqrt{k/m}, \ \gamma = m\omega_0/Q$$

Bode diagram

e.g. RC filter

$$V_{\text{out}} = q/C$$

$$\dot{q} = (V_{\text{in}} - V_{\text{out}})/R$$

$$\Longrightarrow i\omega C V_{\text{out}}(\omega) = (V_{\text{in}}(\omega) - V_{\text{out}}(\omega))/R$$

$$\Longrightarrow \frac{V_{\text{out}}(\omega)}{V_{\text{in}}} = \frac{1}{1 + i\omega RC}$$

In most cases, a system TF can be expressed as:

$$H(s) = \frac{b_0 + b_1 s + b_2 s^2 + \dots + b_m s^m}{a_0 + a_1 s + a_2 s^2 + \dots + a_n s^n}$$

 The roots of the numerator are called as "zeros" and the roots of the denominator are called as "poles"

$$H(s) = \frac{b_m \prod_{i=1}^m (s - s_{zi})}{a_n \prod_{j=1}^n (s - s_{pj})}$$

 Zeros (s_{zi}) and poles (s_{pi}) are real numbers (single zeros/poles)

or

pairs of complex conjugates (complex zeros/poles)

Poles rule the stability of the system!
 H(s) can be rewritten as

$$H(s) = \sum_{j=1}^{n} \frac{K_j}{(s - s_{pj})}$$

Each term imposes exponential time impulse response

T.F.:
$$H_j(s) = \frac{1}{s - s_{nj}} \iff \text{I.R.: } h_j(t) = e^{s_{pj}t}$$

• Therefore, if there is ANY pole with $\mathrm{Re}(s_{pj})>0$ the response of the system diverges

Poles rule the stability of the system!

Now we eventually came back to this diagram

Requirement:

All the roots for 1+G should be in the left hand side of Laplace plane

Remarks

Requirement:

All the roots for 1+G should be in the left hand side of Laplace plane

This does not mean all H, F, A needs to be stable.
 e.g. Unstable mechanical system A can be stabilized by a control loop. (cf. An inverted Rod)

We usually play with F to tune the result.
 It is awkward to evaluate the stability of 1/(1+G) every time.

There is a way to tell the stability only from G

Closed loop TF:
$$G_{CL} = 1/(1+G)$$

Nyquist's stability criterion

Nyquist stability criterion

- Plot openloop gain G in a complex plane (i.e. Nyquist diagram)
- If the locus of G(f) from f=0 to ∞, goes to 0 looking at the point (-1 + 0 i) at the left side => Stable
- If the locus sees the point (-1+0 i) at the right side => Unstable

- Unity gain frequency $f_{\sf UGF}$:
- Phase margin ϑ :
- Gain margin g:

for
$$|G(f_{UGF})| = 1$$

$$\vartheta = Arg(G(f_{UGF}))$$

$$g = 1/|G(f_o)|$$
 where $Arg(G(f_o)) = -\pi$

- Phase Margin / Gain Margin in Bode diagram
 - Most of the case, a bode diagram of G is enough to see the stability

- Building blocks ("zpk" representation)
 - Single pole

$$H(s) = \frac{s_p}{s + s_n} \quad (s_p \in \mathbb{R}, s_p > 0)$$

Single zero

$$H(s) = \frac{s + s_z}{s_z} \quad (s_z \in \mathbb{R}, s_z > 0)$$

• A pair of complex poles
$$H(s)=\frac{s_ps_p^*}{(s+s_p)(s+s_p^*)}\quad (s_p\in\mathbb{C},\,\Re(s_p)>0)$$

A pair of complex zeros

$$H(s) = \frac{(s+s_z)(s+s_z^*)}{s_z s_z^*} \quad (s_z \in \mathbb{C}, \Re(s_z) > 0)$$

Gain

$$H(s) = K \quad (K \in \mathbb{R})$$

Relationship between pole/zero locations and wo&Q

$$H(s) = \frac{s_p s_p^*}{(s+s_p)(s+s_p^*)}$$
$$= \frac{|s_p|^2}{s^2 + 2\Re(s_p)s + |s_p|^2}$$

To be compared with

$$H(\omega) = \frac{\omega_0^2}{-\omega^2 + i\omega_0\omega/Q + \omega_0^2}$$

$$\implies \omega_0 = |s_p|, \ Q = \frac{|s_p|}{2\Re(s_n)}$$

Summary

- Classical control theory
- Design locations of poles and zeros
- Stability: tuning of open loop transfer function is important

Control system components in GW detectors

Control systems

Elements of a feedback loop (again)

Interferometer control system

Local control vs global control

Shadow sensor (relative displacement sensor)

For suspension damping control, mirror attitude monitor

Typical linear range ~1mm for o-1oV => dV/dx = 10 kV/m

Typical noise level: ~ 100 pm/sqrtHz

aLIGO: Birmingham Optical Sensorand Electro-Magnetic actuator (BOSEM)

Shadow sensor (relative displacement sensor)

Linear range (~o.7 mm) / displacement noise

sensor locations

L Carbone, Class. Quantum Grav. 29 (2012) 115005

- Linear Variable Differential Transducer (relative disp. sensor)
 - For low freq pendulum control (inverted pendulum), larger range VIRGO Super attenuator, KAGRA Seismic Attenuation System

Typical linear range \sim 10mm for 0-10V => dV/dx = 1 kV/m

H. Tariq, Nuclear Instruments and Methods in Physics Research A 489 (2002) 570–576

- Optical Lever (relative angular sensor)
 - Angle local control
 - Typical linear range ~beam side (0.1~1 mm) => dV/dθ = 1 ~10 kV/rad
 Typical noise level: 0.01~1 nrad/sqrtHz

- Piezo Accelerometer (<u>Inertial sensor</u>)
 - Vibration measurement
 - Typical linear range ~ 100~1000 m/s²
 Typical noise level: 0.5 ~ 50 (μm/s²)/sqrtHz

Local Sensors

- Servo Accelerometer (<u>Inertial sensor</u>)
 - Seismic platform control (f>0.1Hz), Vibration measurement

Apply force to the suspended mass => Keep the distance from a reference

When the control gain G>>1

$$=> a = F / m$$

Local Sensors

- Servo Accelerometer (<u>Inertial sensor</u>)
 - Above the resonant freq: Limited by the sensor noise
 - Below the resonant freq:
 Steep rise of the noise as the mass does not move in relative to the ground
 - => Low resonant freq is beneficial

Fig.7. Equivalent frame displacement noise.

A. Bertolini et al, Nuclear Instruments and Methods in Physics Research A 564 (2006) 579–586

Acutuators

Mechanical actuators

- Coil Magnet actuator
- Electro Static Driver (ESD)
- Piezo (PZT) actuator

Optical actuators

- Acousto-Optic Modulator
- Electro-Optic Modulator
- Laser Frequency

Acutuators (Mechanical)

Coil-magnet actuator

- Coil current induces force on a magnet attached to a mass
- Contactless
- aLIGO coil-magnet actuator is integrated in BOSEM
- Actuator response (coupling)
 has position dependence.

 Preferable to use it at its maximum in order to avoid vibration coupling

Acutuators (Mechanical)

- Electro Static Driver (ESD)
 - Apply potential close to the mirror
 => induces surface charge (or polarization) and attractive force
 - In practice, comb patterns are used
 => strengthen the electric field, but less force range
 - Can produce only attractive force. => Need DC Bias.
 - Stray surface charging may cause problems.

Acutuators (Mechanical)

- Piezo (PZT) actuator
 - Apply potential to a feroelectric material
 - => cause internal polarization and induces strain
 - To increase displacement, laminated piezo is often used
 - => displacement 3~10 μm
 - Requires a bias voltage and HV amplifier,
 but has wide applications

OMC cavity mirror

Acutuators (Optical)

- Acousto-Optic Modulator
 - Phonon-Photon scattering (or bragg diffraction) in AOM crystal
 - Effect: Beam deflection / Frequency shift
 - Application: Laser frequency actuator, Laser intensity actuator
 Beam angle scanner

Acutuators (Optical)

- Electro-Optic Modulator
 - Pockels Cell effect:

Refractive index changes linearly to the applied E-field

Application:

Laser phase modulation

Phase actuation (= frequency actuation)

Acutuators (Optical)

- Laser frequency actuation (YAG NPRO laser)
 - We often control laser frequency with multiple actuators
 - 1) Thermal actuator
 Thermo-Electric Cooler attached to the laser crystal.
 Huge response (1GHz/K or 1GHz/V) but slow (f<0.1Hz)
 - 2) Fast piezo actuator
 A piezo attached on the laser crystal induces stress induced refractive index change.
 Response (~1MHz/V). Bandwidth 10~100kHz
 - 3) External EOM
 Response (~10 mrad/V), Bandwidth ~1MHz

Servo Controller

Analog servo filters

- High dynamic range (~1nV/sqrtHz, +/-1oV),
 High bandwidth
- Pole/zero placement with active op-amp filters
- Until the end of the 20th century, analog filters have been commonly used for servo filters in our field
- Analog servos are still in action for the feedback loops with bandwidth >1kHz. (cf. frequency stabilization, intensity stabilization)

LIGO 40m prototype (1998)

Servo Controller

Digital servo filters

Process digitized signals in a computer

- Large flexibility
 High compatibility with detector automation and management
- Limited dynamic range (~o.1mV/sqrtHz, +/-1oV for 16bit)
- Limited bandwidth
 - Each sample needs to be processed before the next sampled data comes
 - Inevitable sampling delay
 - Additional phase delays due to analog filters for analog-digital interface
 - e.g. 16kHz sampling, control bandwidth ~200Hz

Analog/Digital interface

- Restriction of signal digitization
 - Voltage quantization: quantization noise
 - => limited dynamic range
 - => Requires whitening/dewhitening filters
 - Temporally discrete sampling: aliasing problem
 - => limited signal bandwidth
 - => Requires anti-aliasing (AA) / anti-imaging (AI) filters
 - Typical signal chain

Control room

Comparison of the control room in the analog and digital eras

aLIGO (2014)

TAMA300 (2001)