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Control system
In Gravitational Wave Detectors




Introduction ~ Control?

Gravitational wave detection
Laser displacement sensor
Requires linear displacement detection

Control for measurement
Laser interferometer = nonlinear device
Feedback control => linearization



Introduction ~ Control?
What is the feedback control?

A scheme to monitor and modify output(s) of a system by

changing the input(s) depending on the output(s)

Examples
Shower temperature Air conditioning
Car driving Bike riding
Tight rope walking Inverted bar on a hand

Imagine what happens
If the response is too slow?

If the response is too fast?



Introduction ~ Control?

Elements of a feedback loop

Stabilized | m or m/Hz/2

motion
m or m/Hz*2 o)
Disturbance o + Error
_ ~ H O signal
Sensor V or V/Hz*2
V/m v
Actuator Servo
m/V J A F Filter
Y * _V/V
Feedback |
signal  ©

V or V/Hz*/> Transducer Filter




Introduction ~ Control?

Sensor:
Transducer for displacement-to-voltage conversion
If the sensor is completely linear

(and has or no frequency dependence)
AV

We don’t need feedback control!




Introduction ~ Control?

In reality:

Sensors, Iaservinterferometers In particular, are nonlinear!

P77V =H x?7?

Vv

V=HX

Enclose the operating point in the linear region

=>The system recovers linearity

Was the displacement modified by the feedback?
=> Precise knowledge of the control system

for signal reconstruction



Introduction ~ Control?

Elements of a feedback loop

disturbance dXS stabilized disturbance

dXo _T > H >0 Verr
error signal
actuator sensor
A F servo filter
feedback
signal Vfbo‘
Open loop transfer function
dx. = dx - G dx, S w
= dx_ = dx / (1+G) G=HFA
= dX =Verr (1+G)/H e y
dx =Vg A(1+G)/ G




Introduction ~ Control?

disturbance dXS stabilized disturbance

dXo T — T > H
actuator sensor
A
feedback
sighal Vfb O

>0 Verr _
erroi ;>|gna|
F servo filter

dx, = dx = G dx_
= dx, = dx / (1+6)
=dx =V, (1+6)/H
dx =Vg A(1+G)/ G

Open loop transfer function

def

G=HFA

p




Introduction ~ Control?

dx.= dx/(2+G) = 0.09 dx, 0.01 dx, 0.001 dx

dx © H O V_ =dx H J(1+G)

Actuator range

Residual error
0.91 dx, A = vs
0.99 dx, Sensor linear range

0.999 dx T '

O
Filter frequency
Vi =G/(2+G) /A dx response / loop

= 0.91 dx/A, 0.99 dx/A, 0.999 dx/A stability



Introduction ~ Control?

When the openloop gain G is >>1, the error signal gets suppressed

“Wow! our sensor signal became smaller!”
Is our system more sensitive now?

No. We are just moving the actuator so that the error signal looks smaller.
The signal and noise are equally suppressed in the error signal.
Thus the SNR does not change.

OK... So can we still measure gravitational waves
even if the error signal is almost zero?

Yes. We should be able to recover the original signal by compensating the
effect of the control i.e. (1+G)

And we can also use the feedback signal in order to reconstruct the original
signal with appropriate compensation i.e. (1+G)/G



Introduction ~ Control?

Important difference between

“Feedback control for stabilization”
and “Feedback control for measurement”

Feedback control changes the stabilized motion
but reconstructed Disturbance is not modified by the loop*
(*if everything is linear)

Stabilized
motion
Disturbance Oi&i H Error
‘ ° signal
Sensor
Actuator Servo
A Pl Filter

Feedback T
signal



Linear systems
and their stability



Linear systems and their stability

A deterministic and time-invariant system: H

System Input N

X(t)

H

3 System Output
y(t)

The system H is LTI (linear & time-invariant) when
y1(t) = H{x1(t)}
y2(t) = H {x2(t)}
= ay1(t) + By2(t) = H {ax1(t) + Br2(t)}

We can deal with such a system using Laplace transform

(or almost equivalently Fourier Transform)



Linear systems and their stability

Time domain vs Laplace (or Fourier) frequency domain

Time domain / Impulse response
r

x(t) —»| h(t) pF—» y(t) = h(t)*x(1)

| | !

Inverse

1 aplace 1 aplace ,.Zap/ace

I ' |
X(8) —»| H(s) —» Y(s)= H(s)-X(s)

« 
transfer function

Frequency domain http://en.wikipedia.org/wiki/Linear system
http://en.wikipedia.org/wiki/LTI_system_theory




Linear systems and their stability

It is easy to convert from an ordinary differential

equation to a transfer function

d:>
— S
dt

Laplace Transform

— 1w = 127 f | Fourier Transform

e.g. Damped oscillator

mZ(t) = —kx(t) — v&(t) + F(t)
ms*X(s) = —kX(s) — vsX(s) + F(s)

H(s) = X(s)

1

F(s)

ms? + s+ k




Linear systems and their stability

e.g. Damped oscillator

1
H(s) —
(5) ms? + vs + k
1 1 g
H(S):ms2+ﬂs+w2 E
Q 0 S
1 1
H —
() m—w2+i%w+w8

= Vk/m, v=muwy/Q

180

Phase [deg]

Bode diagram ~180

120t

I
(o)} (o)}
(eoNoNe)

~120}

10

Iog Iog

Angular Frequency [mo]



Linear systems and their stability

e.g. RC filter

_ /\R/\ A R
@ v ——cC  Vout @
N N N
Vous = q/C

Q — (V;n — Vout)/R

—— ’I:CUCVOUJC (CU) =
Vout (w)
Vin

(Vin(w) — Vout(w))/ R

Magnitude

Phase [deg]

cut-off freq
w = 1/(R*(C)

107°F

10

180
12071
60}

-60r1
-120¢

-180

10

107 10° 10’
Angular Frequency [1/(R*C)]



Linear systems and their stability

In most cases, a system TF can be expressed as:

- by +bis+bas® + .+ by, s™
ag+ais—+ass?+ ...+ a,s”
The roots of the numerator are called as “zeros”

and the roots of the denominator are called as “poles”
b [ 15— (5 — 82i)
An H?:l(s — Spj)

Zeros (s,;) and poles (s ;) are

H(s) =

real numbers (single zeros/poles)
or
pairs of complex conjugates (complex zeros/poles)



Linear systems and their stability

Poles rule the stability of the system!
H(s) can be rewritten as

=1 (5 — Spj)

Each term imposes exponential time impulse response

1
T.F.: Hi(s) = < LR.: h;(t) = eSrit

Therefore, if there is ANY pole with Re(s,;) > 0
the response of the system diverges



Linear systems and their stability

Poles rule the stability of the system!
Unstable
response

Re(s)

Figure 12: Root locus for different arrangements of the eigen values

http://nupet.daelt.ct.utfpr.edu.br/ ontomos/paginas/AMESims.2.0/demo/Misc/la/SecondOrder/SecondOrder.htm




Linear systems and their stability

Now we eventually came back to this diagram

dx. = dx/(2+G)
dx
Q—>D‘T‘ H l °  Open loop TF:

G=HFA

A F Closed loop TF:
G =1/(1+G)

Requirement: \(I)
All the roots for 1+G should be '
in the left hand side of Laplace plane




Linear systems and their stability

Remarks

Requirement:
All the roots for 1+G should be in the left hand side of Laplace plane

This does not mean all H, F, A needs to be stable.
e.g. Unstable mechanical system A can be stabilized by
a control loop. (cf. An inverted Rod)

We usually play with F to tune the result. Opgll II(_)I?:pJF:

It is awkward to evaluate the stability

of 1/(1+G) every time. Closed loop TF:
_ - G =1/(1+G)

There is a way to tell the stability only from G

Nyquist’s stability criterion




Linear systems and their stability
Nyquist stability criterion

Plot openloop gain G in a complex plane (i.e. Nyquist diagram)

If the locus of G(f) from f=0 to oo, goes to o looking at the point (-1 + 0 i)

at the left side => Stable

If the locus sees the point (-1+0 i) at the right side => Unstable

N Im

Unstable

> Re
- & Stable

L

Unity gain frequency f . :

Phase margin 3J:
Gain margin g:

/\Im

|Gl=1

for IG(fUGF)l =1
9 = Arg(G(fycr))
g =1/|G(f,)| where Arg(G(f,))=-n



Linear systems and their stability

Phase Margin / Gain Margin in Bode diagram

Most of the case, a bode diagram of G is enough to see the stability

) Input MC Openloop TF: UGF 176kHz, P.M. 48deg, G.M.@420kHz 4.3dB

10 =%, ]
a3 iNearly
10’ Unstable
T : . b ‘
g, Unity Gain Freq / ‘\ :
=" (176kHz) Gajn Margin
| 4.3dB@420kHz
10 : : ST I « E
| + Measured Openloop TF| ]
'| — Modelled Openloop TF LA I’OUQh standard of
.o I 100 a stable servo loop:
1805 Phase Margin > 40deg
T 120F —
S 60F Phase Margin Gain Margin > 10dB
0,
g e ’ 48de9_ ~ |
10* 10° -180deg 10°

Frequency [Hz]



Linear systems and their stability

Building blocks (“zpk” representation)

Single pole
H(s) = - ipsp (sp €R, s, > 0)
Single zero
H(s) = ST (s, € R, s, > 0)
A pair of complex poSIZS
H(s) = i (s, € C, R(s,) > 0)

(5'+'Sp)(3'+'3;)
A pair of complex zeros
H(s) = (8 +52)(5 + 57) (s, € C, R(s,) > 0)

S.S%

Gain
H(s)=K (K €R)



Linear systems and their stability

Relationship between pole/zero locations and wo&Q
SpS,
H(s) =

(s +sp)(s+ 5;;)

T 24 2R(sp)s + |sp|?
To be compared with
2
Wo

—w? + iwew/Q + w?

‘Sp‘

2R(s,)

H(w) =

— wo = |Sp|, @ =




Im(w/w,)

Linear systems and their stability
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Linear systems and their stability

Summary
Classical control theory
Design locations of poles and zeros

Stability: tuning of open loop transfer function is important



Control system components
In GW detectors



Control systems

Elements of a feedback loop (again)

Sensor

Actuator A F Servo

Filter
1




Interferometer control system

Local control vs global control

Mirror Mirror Local
Laser . i Control
Local
Length & Contro — | _

Sensing

Controllers \ Global control /




Local Sensors

Shadow sensor (relative displacement sensor)

For suspension damping control, mirror attitude monitor

Typical linear range ~amm for 0-10V => dV/dx = 10 kV/m
Typical noise level: ~ 100 pm/sqrtHz Flag

.r"'

aLIGO: Birmingham Optical Sensor , J’ -2

Coil Actuator

and E|ectro-Magnet|c actuator (BOSEM) Connector 1 LED
Collimating \ 4
Lens i ’I‘:)\ Flavi-rirenijt
H\". I Photodiode ) Sensor carriers

D) .I"u II Coil-former clamp > <y
| ¢Flag & Zamn

LED -'
/ !
Integral /

¥ Coil
Lens Mask  Magnet

L Carbone, Class. Quantum Grav. 29 (2012) 115005 Adjustment fixings (x2)



Local Sensors

Shadow sensor (relative displacement sensor)

Linear range (~0.7 mm) / displacement noise sensor locations
20 - - - - : 5
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n
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c
T
GE.) Test Mass
8 Electrostatic Drive
<
o
R
()]

Frequency [Hz] L Carbone, Class. Quantum Grav. 29 (2012) 115005



readout (mm)

(b)

Local Sensors

Linear Variable Differential Transducer (relative disp. sensor)

For low freq pendulum control (inverted pendulum), larger range
VIRGO Super attenuator, KAGRA Seismic Attenuation System

Typical linear range ~20mm for 0-10V => dV/dx = 1 kV/m
Lock—-in amp

Typical noise level: 10~100 nm/sqrtHz . Sensor
Output
Probing
100: o T o TorTTTT 1 coil
£ 110 nm/sqrtHz | ; (
2 3
10 5 0 5 10 15 % 1 “‘/f”\ :
I I :
T S h
o \-\\\.\!/l/ 0'10.1 T 0 0 1000 Local
s 10 5 o0 s 10 1 Frequency [Hz] Oscillator

displacement (mm)

H. Tarig, Nuclear Instruments and Methods in Physics Research A 489 (2002) 570-576



Local Sensors

Optical Lever (relative angular sensor)

Angle local control

Typical linear range ~beam side (0.2~12 mm) =>dV/d6 =1 ~10 kV/rad

Typical noise level: 0.01~1 nrad/sqrtHz
Laser

Mirror - - -
Optical Lever Calibration
0.3 I — I I i
L \\\
— de o o \ QPD Total Power 260mV
“ x 0.2 \\ Optical Lever Length 1.4m -
e Y
Quad rant % — Ii::lfitting: v[V]=a+bx[mm]
Photodiode dx=2Ldeé N 0.1 * = G280 +4 0,003 7
° z. => 280 V/m => 784 Virad
>
< ® Pitch V
§ 0.0 - b — line fitting: v [V] = a + b x [mm] N
= % a=0.616 +/- 0.005
3 b = -0.294 +/- 0.003
s => 294 V/m => 823 Virad
©  o1p Q. -
®
¢
0.2 \ o o .
® o0 0
\\\
0.3 | B | i
0] 2 4 6 8 10
= A+ B + C + D Micrometer position [mm]
- A-B+C-D

A+B-C-D



Local Sensors

Piezo Accelerometer (Inertial sensor)

Vibration measurement

Typical linear range ~ 100~1000 m/s?
Typical noise level: 0.5 ~ 5o (um/s?)/sqrtHz

[Housing

Mass

Charge amp

>3ﬂ/{>—'

PIEZO
TRANSDUCER




Local Sensors

Servo Accelerometer (Inertial sensor)

Seismic platform control (f>0.1Hz), Vibration measurement

_a 5 Apply force to the suspended mass

[L111111]

=> Keep the distance from a reference

When the control gain G>>1

F(bxo =>a=FIm
—»(Mm)<——| —

G
I
feedback

control




Local Sensors

Servo Accelerometer (Inertial sensor)

Above the resonant freq: Limited by the sensor noise I} 1

Below the resonant freq:

Steep rise of the noise as the mass does not move
in relative to the ground

=> Low resonant freq is beneficial

10" E T T T T T T T T T T T T T T

——sensing noise
- - - Brownian noise

(m/Hz™)

2 Frame
s 0" E 3 |
Z o 1 pm/sqrtHz -
@ o ! IP Proof mass

10\3 I 1 1 1 11 Alll 1 1 1 il I\Pl I 1 1 11 llll ]

001 041 1 10
Frequency (Hz)

Fig.7. Equivalent frame displacement noise. N egative 1 Positive

A. Bertolini et al, Nuclear Instruments and Methods in spring spring

Physics Research A 564 (2006) 579-586



Mechanical actuators

Coil Magnet actuator
Electro Static Driver (ESD)
Piezo (PZT) actuator

Optical actuators
Acousto-Optic Modulator
Electro-Optic Modulator

Laser Frequency



Acutuators (Mechanical)

Coil-magnet actuator photodiode

Coil current induces force
on a magnet attached to a mass

Connector

Z
Contactless VAR - 2 L < " s s B B
o& 11| @ 37 loops ,(,/ “\ H
Ml 1.0 O 8 lOOpS ./ \. —]
. = A 61 / \
aLIGO coil-magnet actuator > 09| A 3 Joope ¢ | M
Is integrated in BOSEM <
E
g
Actuator response (coupling) S
©)
has position dependence.
Preferable to use it at its maximum
in order to avoid vibration coupling | .
ottttttgttptf g g pof |~ r-sH
-15-14-13-12-11-10-9 -8 -7 -6 -5 -4 3 -2 -1 0 1 2

Distance from cent. of coil to cent. of mag. (mm)



Acutuators (Mechanical)

Electro Static Driver (ESD)

Apply potential close to the mirror
=> induces surface charge (or polarization) and attractive force

In practice, comb patterns are used
=> strengthen the electric field, but less force range

Can produce only attractive
force. => Need DC Bias.

Stray surface charging may

(/]




Acutuators (Mechanical)
Piezo (PZT) actuator

Apply potential to a feroelectric material

=> cause internal polarization and induces strain

To increase displacement, laminated piezo is often used
=> displacement 3~10 um

Requires a bias voltage and HV amplifier,

but has wide applications OMC cavity mirror

++4+++ ++ +H+++

‘ Laminated




Acutuators (Optical)
Acousto-Optic Modulator

Phonon-Photon scattering (or bragg diffraction) in AOM crystal
Effect: Beam deflection / Frequency shift

Application: Laser frequency actuator, Laser intensity actuator

Beam angle scanner

\

L~

L

Propagating PZT

Sound waves O

Local Oscillator
fLo

=




Acutuators (Optical)

Electro-Optic Modulator

Pockels Cell effect:
Refractive index changes linearly to the applied E-field

Application:
Laser phase modulation

Phase actuation (= frequency actuation)
LiINbO3 crystal




Acutuators (Optical)

Laser frequency actuation (YAG NPRO laser)

We often control laser frequency with multiple actuators

1) Thermal actuator
Thermo-Electric Cooler attached to the laser crystal.
Huge response (1GHz/K or 1GHz/V) but slow (f<o0.1Hz)

2) Fast piezo actuator

A piezo attached on the laser crystal induces stress induced
refractive index change.
Response (~1MHz/V). Bandwidth 10~100kHz

3) External EOM
Response (~10 mrad/V), Bandwidth ~1MHz



Servo Controller

Analog servo filters LIGO 4om
High dynamic range (~1nV/sqrtHz, +/-10V), tot 8
High bandwidth prototype (1998)
Pole/zero placement
with active op-amp filters

Until the end of the 20" century,
analog filters have been commonly used
for servo filters in our field

Analog servos are still in action for
the feedback loops with bandwidth >1kHz.

(cf. frequency stabilization,
intensity stabilization)




Servo Controller

Digital servo filters

Process digitized signals in a computer

Digital

Filter DAC Vout(t)

Large flexibility
High compatibility with detector automation and management

Limited dynamic range (~0.2mV/sqrtHz, +/-10V for 16bit)

Limited bandwidth
Each sample needs to be processed before the next sampled data comes
Inevitable sampling delay
Additional phase delays due to analog filters for analog-digital interface

e.g. 16kHz sampling, control bandwidth ~200Hz



Analog/Digital interface

Restriction of signal digitization

Voltage quantization: quantization noise
=> limited dynamic range
=> Requires whitening/dewhitening filters

Temporally discrete sampling: aliasing problem
=> |limited signal bandwidth
=> Requires anti-aliasing (AA) / anti-imaging (Al) filters

Typical signal chain
Input Whitening Anti-Aliasing Anti-Whitening
Signal [ Filter [ Filter ADC Filter
Digital Path
Digital  Anti-Dewhitening Anti-imaging Dewhitening

Filter

Filter DAC Filter Filter
Output
Signal



Control room

Comparison of the control room in the analog and digital eras

R
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A Eo g i
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