CHARACTERIZING GLITCHES IN OPLEV.

Summer Research Project

Olmo Cerri

Scuola Normale Superiore di Pisa, University of Mississippi, University of Pisa

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > □ □

Supervisor: Prof. Marco Cavaglià Tutor: Dr. Shivaraj Kandhasamy

Getting started

GlitchFinder warm up Main optics analysis GlitchFinder online tool The End

Why this project the GlitchFinder code

Why do we need this flag?

- Optical levers (OPLEVs) can be used for both the alignament and also characterizing mirror motions.
- Currently we see a lot of glitches in the OPLEVs.
- We believe they might be due to change in OPLEV's laser power

Why LASER power has glitch?

• Glitches may be caused by mode mismatch in LASER cavity

Main purpouse

- Develop a script to identify and characterize glitches in OPLEV
- Develop a tool for online monitoring of the OPLEVs channels

I D F I A B F I B F I

LIGO

Getting started

GlitchFinder warm up Main optics analysis GlitchFinder online tool The End

Why this project the GlitchFinder code

the GlitchFinder code

Data are first bandpassed and then the peaks of the filtered time series above a certain threshold are identified. The resonance frequencies of the optics are below 10 Hz, so we use a pass band of 15-100 Hz which also removes high frequency noise.

GlitchFinder algorithm

- Download the data time series from the server
- Filter the time series
- Flag the peaks above a threshold
- Check for coincidence with alignment channels
- Identify glitches that have no correlation with alignment channels

lígo

Getting started

GlitchFinder warm up Main optics analysis GlitchFinder online tool

Why this project the GlitchFinder code

GlitchFinder example

LIGO-G1401105: CHARACTERIZING GLITCHES IN OPLEV

Olmo Cerri

4 / 18

Test runs GlitchFinder 1 week data runs

Test runs

We run GlitchFinder on 3 hour data from the following two channels:

- $L1: SUS ITMX_L3_OPLEV_SUM$
- $L1: SUS ETMX_L3_OPLEV_SUM$

Questions:

- How can we distinguish between:
 - "Bad": Too much glitches for being used in the feedback loop
 - "Good": Could be used in the loop without fallout
- What is the time and amplitude distribution of the glitches?
- What is the optimal threshold to identify glitches?
- What is the rate of false positives?

False positives may be avoided by performing a coincident analysis with the OPTICALIGN channel. $\langle \Box \rangle \langle \exists \rangle \langle \exists \rangle \langle \exists \rangle \langle \exists \rangle \rangle \langle \exists \rangle \rangle$

Test runs GlitchFinder 1 week data runs

ITMX and ETMX comparison

ETMX and ITMX comparison

Test runs GlitchFinder 1 week data runs

More runs

We then looked at one week of data to get more statistics:

Next slides show:

- Distribution of glitche amplitudes.
- Number of triggers in each half-hour during that week.

Analyzed channels:

- L1:SUS-ITMX_M3_OPLEV_SUM_OUT_DQ
- L1:ISI-HAM4_OPLEV_SUM_IN1_DQ
- L1:SUS-ETMX_M3_OPLEV_SUM_OUT_DQ

<ロト < 回ト < 回ト < 回ト

'LIGO

Test runs GlitchFinder 1 week data runs

L1: SUS – ITMX M3 OPLEV SUM : Glitches vs Time

Test runs GlitchFinder 1 week data runs

L1: SUS - ITMX M3 OPLEV SUM : Glitches distribution

LIGO-G1401105: CHARACTERIZING GLITCHES IN OPLEV

9 / 18

Test runs GlitchFinder 1 week data runs

Summary of ITMX OPLEV results

Observation

In the one week-long data stretch GlitchFinder found 13 half-hour with glitches.

Overall GlitchFinder produced 117 triggers (thr=7.5):

- 18 triggers were just above threshold and the time series looked smooth
- 1 was coincident with a trigger in the OPTICALIGN channel but the correlation with the alignment channels did not pick this one
- 98 were loud and may be considered as real glitches

False positives ratio for this run: $16 \pm 4\%$

Conclusions

- ITMX Laser is not behaving as good as we thought
- As we can see from the previous plot, we expect from linear approximation that a "good" laser to show no amplitude (filtered) above threshold of ≈ 7.5

<ロト < 回ト < 回ト < 回ト

D

Test runs GlitchFinder 1 week data runs

L1:ISI-HAM4_OPLEV_SUM_IN1_DQ: Glitches vs Time

LIGO-G1401105: CHARACTERIZING GLITCHES IN OPLEV

Olmo Cerri 11 / 18

Test runs GlitchFinder 1 week data runs

L1:ISI-HAM4 OPLEV SUM IN1 DQ: Glitches Distribution

Total glitches detected in 7 days in HAM4_OPLEV_SUM

LIGO-G1401105: CHARACTERIZING GLITCHES IN OPLEV

Olmo Cerri

Test runs GlitchFinder 1 week data runs

Summary of HAM4 OPLEV results

Observation

In the one week-long data stretch GlitchFinder found 4 half-hour with glitches.

Overall GlitchFinder produced 96^{*} triggers (thr=7.5):

- 6 triggers just above threshold but the time series looks OK
- None of the triggers have any coincident with OPTICALIGN channels
- 90 were loud and may be considered as real glitches

False positives ratio for this run: $6.25\pm2.5\%$

Conclusion

- HAM4 laser looks good.
- $\bullet\,$ After this two run GF efficency in glitch detection: $88\pm11\%$

*: to compare this number with the triggers in ITMX we have to remember that sampling frequency is 4 times higher in HAM4. $\langle \Box \rangle \langle \Box \rangle \langle$

Test runs GlitchFinder 1 week data runs

L1:SUS-ETMX M3 OPLEV SUM DQ: Glitch Distribution

14 / 18

Main optics glitches distribution Conclusion

Comparison between main optics OPLEV channels: Glitch Distribution

・ロト ・日ト ・ヨト

Main optics glitches distribution Conclusion

Summary on main optics OPLEV channels

About channels from 8/5/14 to 8/12/14

- All analyzed channels show high rate of glitches.
- $L1: SUS ITMX_L3_OPLEV_SUM_OUT_DQ$ seems to be the channel with lower number of glitches

Conclusion

• Due to the high rate glitches, it would be difficult to use the OPLEVs for optics control.

(ロ) (日) (日) (日) (日)

'LIGO

GlitchFinder online

GlitchFinder online

We developed a script to be used on online data for glitches detection.

GlitchFinder online features:

- Real-time data analysis and glitch detection
- Look at a large number of channels at the same time
- Trigger alert message
- Archiving the times of the triggers

Online GlitchFinder is almost ready and will be tested soon. We are going to use this script also for LASER characterization.

<ロト < 回ト < 回ト < 回ト

ĽíGO

Suggestions and comments are welcome!

Thank you!

Contact: olmo.cerri@LIGO.org

LIGO-G1401105: CHARACTERIZING GLITCHES IN OPLEV