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The Problem

Can we estimate the parameters of 
the original distribution?
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Selection Bias

• Classic astrophysics dilemma

• Distant or dim objects may not be taken into 
account

• Weak signals may not produce signal-to-noise 
ratios above LIGO’s threshold

• If we don’t take into account these weak 
signals, we are leaving out a portion of the 
population whenever we make inferences
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Theory: Hierarchical 
Modeling

p(✓n|Dn) =
p(✓n)p(Dn|✓n)

p(Dn)

Bayes’ Theorem for an event n out of N

Assuming event independence and parameter separability:

Standard Monte Carlo integral approximation:

p(↵|{Dn}Nn=1) = p(↵)
NY
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Toy Model: Gaussian
•We start by sampling a normal gaussian with arbitrarily chosen parameters:

µ = 0.4 � = 0.1

•sampled more heavily 
at higher probabilities
•distributions given random 
  standard deviation between                              

and          1⇥ 10�50 0.2
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Results
Using 100 walkers each taking 1000 steps, we were able to obtain a 

distribution for the original parameters

�

�µ

µ = 0.4

µ̄ = 0.39

�̄ = 0.056

� = 0.01

say what walkers are
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Toy Model: Chirp Mass

• We use Parallel Tempering method within our 
Markov-Chain Monte Carlo module

• Walkers explore different “energy levels” with 
altered likelihoods

• Allows for easier sampling of distributions with 
multiple peaks
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N runs
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Theory: Selection Bias
N runs

n events above 
SNR threshold (triggers)

N-n events below
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Actual signals Actual signalsnoise noise
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Theory: Selection Bias
•Need to account for false detections, 

false dismissals, and true dismissals

non-triggersY
[p(no trigger|signal)

+p(trigger|no signal)]

+p(no trigger|no signal)]

⇥

triggersY
[p(trigger|signal)

Altered Likelihood =
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• We started by attempting to reproduce John 
Veitch and Chris Messenger’s 2013 paper 
“Avoiding selection bias in gravitational wave 
astronomy”
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Toy Model Revised

• We started by attempting to reproduce John 
Veitch and Chris Messenger’s 2013 paper 
“Avoiding selection bias in gravitational wave 
astronomy”

• Published version of the paper was missing 
parameter-dependent factors in the altered 
likelihood
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Toy Model Revised

•Once we added in the parameter-dependent factors, we were 
able to estimate parameters of the mass distribution, as well as 

the rate of events

•Masses drawn from gaussians, SNRs depend on masses and 
distance from source

µ = 1.2M�

� = 0.1M�

µ �

�

R

R

R = 4.18⇥ 10�7Mpc�3yr�1

R̄ = 4.5⇥ 10�7Mpc�3yr�1

�̄ = 0.14M�

µ̄ = 1.2M�
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Complete Mass-Distribution 
Parameter Estimation 

(Conclusion)
We now have the tools to run a full parameter estimation 

which takes into account:

•Sampling from a chirp mass distribution

•Noisy data

•Selection bias effects
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Future Work

• Calculate number of events we need to make 
accurate inferences

• Full 10-dimensional parameter estimation

• Bayesian model selection

• Explore distributions on other parameters--
gravitational-wave astronomy!
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Mass Measurement
• Gravitational waveforms depend explicitly on the 

mass of the source

h̃(f) =

✓
1Mpc

De↵

◆
A1Mpc(M,µ)f�7/6e�i (f ;M,µ)

A1Mpc = �
✓

5

24⇡

◆1/2 ✓GM�/c2

1Mpc

◆✓
⇡GM�

c3

◆�1/6 ✓ M
M�

◆�5/6
where

De↵

f

 

M
µ

M

=

=

=

=

=

=

distance from detector

frequency of gravitational wave

total mass

reduced mass

chirp masspolarization

We measure the chirp mass.
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