Extraction	ng Physics f	rom the St	ochastic	
	ig i fiysics fi		ochastic	

Gravitational Wave Background

SURF: Brittany Christy Mentors: Tjonnie Li, Eric Thrane

University of California, Santa Barbara

bkc@umail.ucsb.edu

August 19, 2014

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Overview		

1 Introduction and Background

2 Methods

3 Results

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

SURF: Brittany Christy Mentors: Tjonnie Li, Eric Thrane

What is the Stochastic Gravitational Wave Background?

- Composed of many independent and unresolved gravitational wave sources (too weak to be detected on their own)
- Every model can be described by gravitational wave energy density:

$$\Omega_{GW}(f) = \frac{f}{\rho_c} \frac{dp_{GW}}{df}$$

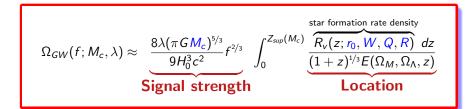
•
$$\frac{dp_{GW}}{df}$$
 = energy density of GWs in f to $f + df$

• ρ_c = critical energy density of the universe

< ロト < 同ト < ヨト < ヨト = ヨ

GW Source Model: Coalescing Binary Neutron Stars

We can write Ω_{GW} as an integral over redshift z and chirp mass, approximating by using only the average chirp mass M_c , where

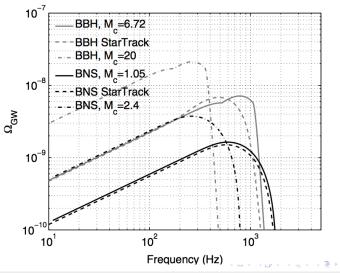


• $r_0 \implies$ local star formation rate in $Mpc^{-3}yr^{-1}$

• $W, Q, R \implies$ phenomenological parameters

▲日▼ ▲母▼ ▲日▼ ▲日▼ ヨー ショマ

Plot of Ω_{GW}



SURF: Brittany Christy Mentors: Tjonnie Li, Eric Thrane

3

(日) (周) (王) (王)

Why Do Parameter Estimation on BNS Sources?

Using data from gravitational-wave detectors, we can estimate the parameters r_0 , W, R, Q to infer star formation rate density.

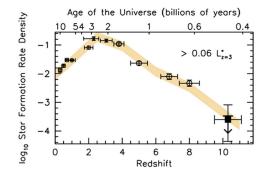
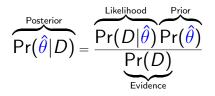


Figure 2: The data points show different observational measurements.

Methods		

Parameter Estimation Using Bayesian Inference

Bayes' formula:

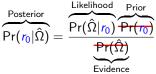


- $\hat{\theta} \implies$ Parameter(s) to be estimated
- D ⇒ Observational data

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● ○ ○ ○ ○

Inference Example for Star Formation Rate Parameter

Estimate r_0 for a compact binary coalescence stochastic background model:



- r_0 : local star formation rate to be estimated ($Mpc^{-3}yr^{-1}$)
- $\hfill \hat{\Omega}$: cross correlation estimator: correlated output of two gravitational wave detectors
 - Simulated Ω̂ with "true" values of parameters taken from a research source (Coward, 2012): r₀ = 5 × 10⁻¹², W = 45, Q = 3.4, R = 3.8
- Take prior to be flat, evidence is a normalization constant.

▲日▼ ▲母▼ ▲日▼ ▲日▼ ヨー ショマ

$$\underbrace{\mathsf{Pr}(\hat{\Omega_i},\sigma_i|\vec{\theta})}_{\mathsf{Likelihood}} \propto \exp\left[-\frac{1}{2}\sum_{i}\frac{[\hat{\Omega}_i - \Omega_{\mathsf{GW}}(f_i;\vec{\theta})]^2}{\sigma_i^2}\right]$$

- $\vec{\theta}$: The parameter(s) that we wish to estimate
- Ω
 : Simulated cross correlated output of two gravitational wave detectors (LLO,LHO)
- σ_i : varience of $\hat{\Omega}$
- Summed over all frequency bins f_i.

Sampling the Likelihood Distribution

Problem: Sampling the likelihood is difficult.

- Parameter estimation requires us to sample the values of $\vec{\theta}$ with the highest likelihoods.
- Evaluating the likelihood everywhere is costly, especially in high dimensional spaces.
- To save time, we need a way to sample the likelihood without iterating over most or all of the possible states of $\vec{\theta}$.

イロト 不得 とうき とうとう ほう

Sampling the Likelihood Distribution

Solution: Generate samples using a Markov Chain Monte Carlo Method

- Markov chain: sequence of random variables that randomly moves from state to state over discrete units of time, t.
- Monte Carlo: refers to a computer-driven algorithm that generates the Markov chain.
- Key idea: construct a Markov Chain that converges to the desired distribution (the likelihood distribution in this case).

	Results	

MCMC Parameter Estimation Result for r_0 Alone (a.LIGO)

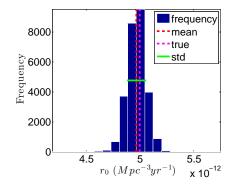
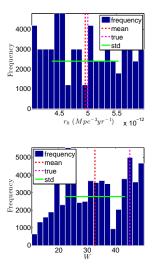


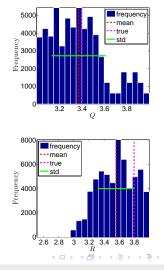
Figure 3: True value of $r_0 = 5 \times 10^{-12}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Introduction and Background Methods **Results** Conclusion Extra Slides

Results for r_0 , Q, W, R (A.Ligo)





LIGO Caltech

Э

Introduction and Background Methods **Results** Conclusion Extra Slides

Star Formation Density Comparison

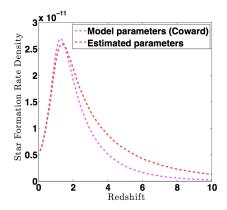


Figure 4: Plots of star formation rate density for true parameter values vs. MCMC estimated parameter values.

э

イロト イポト イヨト イヨト

Conclusion and Future Plans

- Tune Metropolis algorithm to be more sensitive current version only produced good results when noise was taken out of the signal.
- Test updated algorithm on real data collected from the detectors rather than simulated data, to see real parameter estimates.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● ○ ○ ○ ○

		Conclusion	
Acknowledgeme	ents		

- Mentors: Tjonnie Li, Eric Thrane
- Alan Weinstein
- LIGO lab
- NSF

1 Calculate a "true" gravitational wave signal $\Omega_{GW_{true}}$ using expected values for the parameters $\vec{\theta}$:

•
$$r_0 = 5 \times 10^{-12}, W = 45, Q = 3.4, R = 3.8$$

2 Calculate a varience σ (noise):

$$\sigma_{\Omega}(f) = \frac{P(f)}{\frac{1}{5}\gamma(f)} f^3 \frac{2\pi^2}{3H_0^2} \sqrt{\frac{1}{T\delta f}}$$

• P(f) =cross correlated power spectral density

• $\gamma(f) = \text{overlap reduction function: from the overlap of antenna}$ patterns of GW detectors at different locations and with different orientations

 $\hat{\Omega} = \text{array of random numbers with mean } \Omega_{GW_{true}}$, and varience σ_{Ω} .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

						Extra Slides	
		1.1					

Metropolis Algorithm

Metropolis Algorithm

Generates a sequence of random $\vec{\theta}$ samples from a probability distribution for which direct sampling is too difficult.

Pick a symmetric proposal density Q which depends on the current state $\vec{\theta}(t)$. Given previous state θ_0 , proposal density Q, and target density P, iterate over the following:

- \blacksquare Generate a new state $heta^{'}$ with probability density $Q(heta^{'}| heta_{0})$
- **2** Compute the quantity $a = \frac{P(\theta')}{P(\theta_0)}$
- 3 If a ≥ 1 then the new state θ' is accepted. Otherwise, the new state is accepted with probability a.
 4 If θ' was accepted, then add it to the chain. Otherwise, add θ₀ to the chain again.

SURF: Brittany Christy Mentors: Tjonnie Li, Eric Thrane

Star Formation Rate Density Function

SFR Density $\propto rac{r_0(1+W)e^{Qz}}{e^{Rz}+W}$

▲ロト ▲母 ▶ ▲臣 ▶ ▲臣 ▶ ● 臣 ● のへの

SURF: Brittany Christy Mentors: Tjonnie Li, Eric Thrane

Extracting Physics