Extracting Physics from the Stochastic
Gravitational Wave Background

SURF: Brittany Christy
Mentors: Tjonnie Li, Eric Thrane

University of California, Santa Barbara

bkc@umail.ucsb.edu

August 19, 2014

SURF: Brittany Christy Mentors: Tjonnie Li, Eric Thrane

Extracting Physics



Overview

Introduction and Background

Methods

Results

A Conclusion

SURF: Brittany Christy Mentors: Tjonnie Li, Eric Thrane

Extracting Physics



Introduction and Background

What is the Stochastic Gravitational Wave Background?

m Composed of many independent and unresolved gravitational wave
sources (too weak to be detected on their own)

m Every model can be described by gravitational wave energy density:

f dpew
Q f)=—
ew(f) oo df

L] dpdeW = energy density of GWs in f to f + df

m p. = critical energy density of the universe
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Introduction and Background

GW Source Model: Coalescing Binary Neutron Stars

We can write Q2w as an integral over redshift z and chirp mass,
approximating by using only the average chirp mass M, where

star formation rate density

BA(rG M, o /ZSHP(W R,(z;r0, W, Q,R) dz
0

ch(f, Mca )‘) ~

QHSC2 (1+Z)1/3E(QM,Q/\,Z)
| —
Signal strength Location

m ry = local star formation rate in Mpc—3yr—!

m W, Q, R = phenomenological parameters
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Introduction and Background

Plot of Qcw
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Introduction and Background

Why Do Parameter Estimation on BNS Sources?

Using data from gravitational-wave detectors, we can estimate the
parameters ry, W, R, @ to infer star formation rate density.
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Figure 2: The data points show different
observational measurements.
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Parameter Estimation Using Bayesian Inference

Bayes' formula:

Likelihood Prior

Posterior = =

A Pr(D|0)Pr(6

Pr(d|D) - P PL()D)r()
Evidence

m () = Parameter(s) to be estimated
m D = Observational data
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Inference Example for Star Formation Rate Parameter

Estimate ry for a compact binary coalescence stochastic background

model:
Posteri Likelihood  pyior
osterior A —_——
‘ ~ Pr(Q|r)Prtm)
Pr(rnl) = ——————=
Prie)
~——
Evidence

m rp : local star formation rate to be estimated (Mpc—3yr—1)

m ) : cross correlation estimator: correlated output of two
gravitational wave detectors
m Simulated Q with "true” values of parameters taken from a research
source (Coward, 2012): o =5x 1072, W =45, Q =3.4,R = 3.8

m Take prior to be flat, evidence is a normalization constant.
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Likelihood Function

Likelihood
/_/% A . N 2
2 = 1 (€2 — Qew(f;; 0)]
Pr(€;,0:]0) x exp [—2 E p

= 0 : The parameter(s) that we wish to estimate

m Q : Simulated cross correlated output of two gravitational wave
detectors (LLO,LHO)

m o, : varience of Q

m Summed over all frequency bins f;.
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Sampling the Likelihood Distribution

Problem: Sampling the likelihood is difficult.

m Parameter estimation requires us to sample the values of g with the
highest likelihoods.

m Evaluating the likelihood everywhere is costly, especially in high
dimensional spaces.

m To save time, we need a way to sample the likelihood without
iterating over most or all of the possible states of 6.
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Sampling the Likelihood Distribution

Solution: Generate samples using a Markov Chain Monte Carlo Method

m Markov chain: sequence of random variables that randomly moves
from state to state over discrete units of time, t.

m Monte Carlo: refers to a computer-driven algorithm that generates
the Markov chain.

m Key idea: construct a Markov Chain that converges to the desired
distribution (the likelihood distribution in this case).
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MCMC Parameter Estimation Result for ry Alone (a.LIGO)
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Figure 3: True value of rp =5 x 107"
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Results

Introduction and B.
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Star Formation Density Comparison
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Figure 4: Plots of star formation rate density for true parameter values vs.
MCMC estimated parameter values.
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Conclusion

Conclusion and Future Plans

m Tune Metropolis algorithm to be more sensitive - current version
only produced good results when noise was taken out of the signal.

m Test updated algorithm on real data collected from the detectors
rather than simulated data, to see real parameter estimates.
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Conclusion
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Extra Slides

Simulating Detector Data Q

Calculate a "true” gravitational wave signal Qew,,. using expected
values for the parameters 6:
mrn=5x10"" W=45Q=34R=38

Calculate a varience o (noise):

P(f) _52m? 1
f = f _ N
o) =T 3\ Tor

m P(f) = cross correlated power spectral density

m ~(f) = overlap reduction function: from the overlap of antenna
patterns of GW detectors at different locations and with different
orientations

Q = array of random numbers with mean Qgw,,., and varience oq.
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Metropolis Algorithm

Metropolis Algorithm

m Generates a sequence of random §samples from a probability
distribution for which direct sampling is too difficult.

Pick a symmetric proposal density @ which depends on the current state
6(t). Given previous state 8, proposal density @, and target density P,
iterate over the following:

Generate a new state @ with probability density Q(6|6,)

L PO
Compute the quantity a = =)

If a > 1 then the new state 0 is accepted.
Otherwise, the new state is accepted with probability a.

If 0" was accepted, then add it to the chain. Otherwise, add 6y to
the chain again.
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Star Formation Rate Density Function

SFR Density o %
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