Decoherence and degradation in quantum filter cavities

John Miller, Patrick Kwee, Tomoki Isogai, Eric Oelker, Lisa Barsotti, Matthew Evans

LIGO MIT

29 May 2014

The paper

Clickable link to LIGO DCC

Quantum noise

Squeezing makes noise worse

Theoretical filter cavity

Real filter cavity

System under study

Perfect squeezed state, ${\sim}9~\text{dB}$

Frequency independent phase noise, 30 mrad

Injection and readout losses, both 5%

Mode matching

Mode matching

Mode matching, 95% & 98%

Frequency dependent phase noise, 0.3 pm

Filter cavity losses, 1 ppm/m

Bandwidth with losses

Losses (ε), bandwidth (γ) and detuning (Δω)

$$\gamma_{\rm fc} = \sqrt{\frac{2}{(2-\epsilon)\sqrt{1-\epsilon}}} \frac{\Omega_{\rm sql}}{\sqrt{2}}$$
$$\Delta \omega_{\rm fc} = \sqrt{1-\epsilon} \gamma_{\rm fc}$$

Naive approach incorrect

/

Losses up; bandwidth up

Coherent dephasing

1

$$\mathbf{T}_{fc} \sim \underbrace{\mathbf{R}_{\alpha_p}}_{\text{lossless}} \underbrace{\frac{(\rho_p \mathbf{I} - i\rho_m \mathbf{R}_{\pi/2})}{\text{lossy}}}_{\text{lossy}}$$
$$\rho_m^p = \frac{|\mathbf{r}(+\Omega)| \pm |\mathbf{r}(-\Omega)|}{2}$$
$$N(\zeta) = |\mathbf{\bar{b}}_{\zeta} \cdot \mathbf{T}_{fc} \cdot v_{in}|^2$$
$$\sim \sin^2(\zeta)\rho_p^2 A^2 + \cos^2(\zeta)\rho_m^2 A^2$$
$$+ \cos^2(\zeta)\rho_p^2 \phi^2 + \sin^2(\zeta)\rho_m^2 \phi^2$$
$$\sim A^2 \left[\sin^2(\zeta)\rho_p^2 + \cos^2(\zeta)\rho_m^2\right]$$

Relative contributions

Range v loss

Range v squeezing

A new baseline?

Conclusions

- Developed an analytical model of a filter cavity
- Need to add more realism to future IFO designs
- ► Low frequency is hard, it's more than FC losses
- More squeezing doesn't help (yet)
- \blacktriangleright One ${\sim}10$ m cavity is good enough

