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Abstract. There are several common conventions in use by the gravitational-wave community to
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consistently compare different detectors. Similar figures can be generated on-line for general use at
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PACS numbers: 04.30.–w, 04.30.Db, 04.80.Nn, 95.55.Ym

1. Introduction

The next few years promise to deliver the first direct detection of gravitational waves (GWs).

This will most likely be achieved by the advanced versions of the Laser Interferometer

Gravitational-wave Observatory (LIGO; Harry, 2010) and Virgo (Acernese et al., 2009)

detectors operating in the frequency range (10–103) Hz. By the end of the decade, it is

expected that pulsar timing arrays (PTAs; Foster and Backer, 1990) will also detect very low

frequency GWs around 10−8 Hz. Further into the future, space-based detectors, such as the

evolving Laser Interferometer Space Antenna (eLISA; Seoane et al., 2013) ‡ These advances

shall herald the beginning of multi-wavelength GW astronomy as a means of observing the

Universe.

There already exists an extensive literature assessing the potential of all of these detectors

to probe the astrophysics of various sources. There are several different methods commonly

used to describe the sensitivity of a GW detector and the strength of a GW source. It is

common practice to summarise this information on a sensitivity-curve plot. When producing

these plots, it is desirable to have a consistent convention between detectors and sources

that allows information about both to be plotted on the same graph. Ideally, the detectors

‡ The e in eLISA originally stood for evolved, but the preference now is for evolving.
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and sources are represented in such a way that the relative detectability of the signals is

immediately apparent.

In this work, we discuss the differing conventions commonly used in GW astronomy. The

amplitude of a GW is a strain, a dimensionless quantity h. This gives a fractional change

in length, or equivalently light travel time, across a detector. The strain is small, making it

a challenge to measure: we are yet to obtain a direct detection of a GW. To calibrate our

expectations for future detections it is necessary to quantify the sensitivity of our instruments

and the strength of their target signals. When discussing the loudness of sources and the

sensitivity of detectors there are three commonly used parametrizations based upon the strain:

the characteristic strain, the power spectral density (PSD) and the spectral energy density.

We aim to disambiguate these three and give a concrete comparison of different detectors. It

is hoped that this will provide a useful reference for new and experienced researchers in this

field alike.

We begin by expounding the various conventions and the relationships between the

conventions in sections 2 and 3. A review of GW detectors (both current and proposed) is

given in section 4 and a review of GW sources is given in section 5. In Appendix A, several

example sensitivity curves are presented. A website where similar figures can be generated is

available at http://rhcole.com/apps/GWplotter. Here, the user may select which sources

and detectors to include to tailor the figure to their specific requirements.

2. Signal parametrization

2.1. Signal analysis preliminaries

Gravitational radiation has two independent polarization states denoted + and ×; a

general signal can be described as a linear combination of the two polarization states,

h = A+h+ + A×h×. The sensitivity of a detector to these depends upon the relative

orientations of the source and detector. The output of a gravitational wave detector s(t)

contains a superposition of noise n(t) and (possibly) a signal h(t),

s(t) = n(t) + h(t) . (1)

We shall have recourse to work with the Fourier transform of the signal, using the

conventions that

x̃(f) = F {x(t)} (f) =

∫ ∞
−∞

dt x(t) exp(−2πift) , (2)

x(t) = F−1 {x̃(f)} (t) =

∫ ∞
−∞

df x̃(f) exp(2πift) . (3)

For simplicity, it is assumed that the noise in the GW detector is stationary and Gaussian

(with zero mean); under these assumptions the noise is fully characterised via the one-sided

2

http://rhcole.com/apps/GWplotter


noise PSD Sn(f),

〈ñ(f)ñ∗(f ′)〉 =
1

2
δ(f − f ′)Sn(f) , (4)

where angle brackets 〈. . .〉 denote an ensemble average over many noise realisations (Cutler

and Flanagan, 1994). In reality, we have only a single realisation to work with, but the

ensemble average can be replaced by a time average for stationary stochastic noise. The

procedure is to measure the noise over a sufficiently long duration T and then compute the

Fourier transform ñ(f) with a frequency resolution ∆f = T−1; this is repeated many times

to give an average. The noise PSD Sn(f) has units of inverse frequency.

Since the GW signal and detector output are both real, it follows that h̃(−f) = h̃∗(f)

and ñ(−f) = ñ∗(f); therefore, Sn(f) = Sn(−f). The fact that Sn(f) is an even function

means that Fourier integrals over all frequencies can instead be written as integrals over

positive frequencies only, e.g., (9) and (14); it is for this reason that Sn(f) is called the

one-sided PSD.§
When integrated over all positive frequencies, the PSD gives the mean square noise

amplitude. Starting by taking the time average of the square of the detector noise:

|n(t)|2 = lim
T→∞

1

2T

∫ T

−T
dt n(t)n∗(t) (5)

= lim
T→∞

1

2T

∫ T

−T
dt

∫ ∞
−∞

df

∫ ∞
−∞

df ′ ñ(f)ñ∗(f ′) exp (2πift) exp (−2πif ′t)

= lim
T→∞

1

2T

∫ T

−T
dt

∫ ∞
−∞

df

∫ ∞
−∞

df ′ F {n(τ)} (f) [F {n(τ)} (f ′)]
∗

× exp (2πift) exp (−2πif ′t) , (6)

where we have substituted in using the definitions of the Fourier transform and its

inverse. A property of Fourier transforms is that a time-domain translation by amount

t is equivalent to a frequency-domain phase change 2πft; if F {n(τ)} (f) = ñ(f), then

F {n(τ − t)} (f) = ñ(f) exp(2πift). Therefore, the exponential factors in (6) may be absorbed

as

|n(t)|2 = lim
T→∞

1

2T

∫ T

−T
dt

∫ ∞
−∞

df

∫ ∞
−∞

df ′ F {n(τ − t)} (f) [F {n(τ − t)} (f ′)]
∗
. (7)

Since the noise is a randomly varying signal, we can use the ergodic principle to equate a time

average, denoted by (. . .), with an ensemble average, denoted by 〈. . .〉. The noise is stationary,

consequently, its expectation value is unchanged by the time-translation performed above.

§ An alternative convention is to use the two-sided PSD S
(2)
n (f) = Sn(f)/2.
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Therefore, using (4), the mean square noise amplitude is given by

|n(t)|2 =

∫ ∞
−∞

df

∫ ∞
−∞

df ′ 〈ñ(f)ñ∗(f ′)〉 (8)

=

∫ ∞
−∞

df

∫ ∞
−∞

df ′
1

2
Sn(f)δ(f − f ′)

=

∫ ∞
0

df Sn(f) . (9)

Given a detector output, the challenge is to extract the signal. There is a well known

solution to this problem that involves constructing a Wiener optimal filter (Wiener, 1949).

Let K(t) be a real filter function with Fourier transform K̃(f). Convolving this with the

detector output gives a contribution from the signal and a contribution from the noise,

(s ∗K) (τ) =

∫ ∞
−∞

dt [h(t) + n(t)]K(t− τ) ≈ S +N . (10)

The signal contribution S is defined as the expectation of the convolution in (10) when a

signal is present, maximised by varying the offset to achieve the best overlap with the data.

Since the expectation of pure noise is zero it follows that

S =

∫ ∞
−∞

dt h(t)K(t) =

∫ ∞
−∞

dt h(t)K∗(t) =

∫ ∞
−∞

df h̃(f)K̃∗(f) . (11)

The squared contribution from noise N 2 is defined as the mean square of the convolution in

(10) when no signal is present,

N 2 =

∫ ∞
−∞

dt

∫ ∞
−∞

dt′ K(t)K(t′) 〈n(t)n(t′)〉

=

∫ ∞
−∞

dt

∫ ∞
−∞

dt′ K(t)K∗(t′)

∫ ∞
−∞

df

∫ ∞
−∞

df ′ 〈ñ(f)ñ∗(f ′)〉 exp [2πi(ft− f ′t′)]

=

∫ ∞
−∞

df
1

2
Sn(f)K̃(f)K̃∗(f) , (12)

using the definition of Sn(f) from (4). Hence the signal-to-noise ratio (SNR) % is given by

%2 =
S2

N 2
=

(
1
2
Sn(f)K̃(f)

∣∣∣h̃(f)
)2(

1
2
Sn(f)K̃(f)

∣∣∣12Sn(f)K̃(f)
) , (13)

where we have introduced the inner product between signal Ã and B̃ as (Finn, 1992)

(
Ã(f)

∣∣∣B̃(f)
)

= 4<

{∫ ∞
0

df
Ã∗(f)B̃(f)

Sn(f)

}
. (14)
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The optimum filter is that function K̃(f) which maximises the SNR in (13). From the

Cauchy–Schwarz inequality, it follows that the optimum filter is

K̃(f) =
h̃(f)

Sn(f)
. (15)

This is the Wiener filter, which may be multiplied by an arbitrary constant since this does

not change the SNR. Using this form for K̃(f), the squared SNR is

%2 =

∫ ∞
0

df
4|h̃(f)|2

Sn(f)
=
(
h̃(f)

∣∣∣h̃(f)
)
. (16)

In order to construct the Wiener filter, it is necessary to know a priori the form of the signal,

h̃(f), for this reason the Wiener filter is sometimes called the matched filter.

Whilst the magnitude of the Fourier transform of the signal |h̃(f)| provides a simple

quantification of the GW amplitude as a function of frequency, it has one main deficiency.

For an inspiralling source, the instantaneous amplitude can be orders of magnitude below the

noise level in a detector; however, as the signal continues over many orbits, the SNR can be

integrated up to a detectable level. It is useful to have a quantification of the GW amplitude

that accounts for this effect; we shall now describe how this can be achieved.

2.2. Characteristic strain

The characteristic strain hc is designed to include the effect of integrating an inspiralling

signal. Its counterpart for describing noise is the noise amplitude hn. These are defined as

[hc(f)]2 = 4f 2
∣∣∣h̃(f)

∣∣∣2 , (17)

[hn(f)]2 = fSn(f) , (18)

such that the SNR in (16) may be written

%2 =

∫ ∞
−∞

d (log f)

[
hc(f)

hn(f)

]2

. (19)

The strain amplitudes hc(f) and hn(f) are dimensionless. Using this convention, when

plotting on a log–log scale, the area between the source and detector curves is related to the

SNR via (19). This convention allows the reader to integrate by eye to assess the detectability

of a given source (see figure A1).

An additional advantage of this convention is that the values on the strain axis for

the detector curve hn(f) have a simple physical interpretation: they correspond to the

root-mean-square noise in a bandwidth f . One downside to plotting characteristic strain is

that the values on the strain axis hc(f) do not directly relate to the amplitude of the waves

from the source. Another disadvantage is that applying (17) to a monochromatic source
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gives a formally undefined answer. The correct identification of characteristic strain for a

monochromatic source is the amplitude of the wave times the square root of the number of

periods observed (see section 3.1).

2.3. Power spectral density

A second commonly used quantity for sensitivity curves is the square root of the PSD or

the amplitude spectral density (see figure A2). When discussing a detector, rearranging (18)

gives√
Sn(f) = hn(f)f−1/2 ; (20)

by analogy, we can define an equivalent for source amplitudes√
Sh(f) = hc(f)f−1/2 = 2f 1/2

∣∣∣h̃(f)
∣∣∣ , (21)

where we have used (17). Both
√
Sn(f) and

√
Sh(f) have units of Hz−1/2. The root PSD is

the most frequently plotted quantity in the literature.

The PSD, as defined by (4), has the nice property, demonstrated in (9), that integrated

over all positive frequencies it gives the mean square amplitude of the noise in the detector.

However, in one important regard it is less appealing than characteristic strain: the height of

the source above the detector curve is no longer directly related to the SNR.

2.4. Energy density

A third way of describing the amplitude of a GW is through the energy carried by the

radiation. This has the advantage of having a clear physical significance. The energy density

is most commonly used in sensitivity curves showing stochastic backgrounds of GWs (see

section 3.2).

The energy in GWs is described by the Isaacson stress–energy tensor (Misner et al.,

1973, section 35.15)

Tµν =
c4

32πG

〈
∂µh̄αβ∂ν h̄

αβ
〉
, (22)

where the angle brackets denote averaging over several wavelengths or periods, and h̄αβ is

the transverse-traceless metric perturbation. The energy density ρc2 is given by the T00

component of this tensor. Consequently (cf. Berry and Gair, 2013),

ρc2 =
c2

16πG

∫ ∞
−∞

df (2πf)2 h̃(f)h̃∗(f) (23)

=

∫ ∞
0

df
πc2

4G
f 2Sh(f) , (24)
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where the definition (21) has been used. The integrand in (24) is defined as the spectral

energy density, the energy per unit volume of space, per unit frequency (Hellings and Downs,

1983)

SE(f) =
πc2

4G
f 2Sh(f) ; (25)

a corresponding expression for the noise can be formulated by replacing Sh(f) with Sn(f).

Cosmological studies often work in terms of the dimensionless quantity ΩGW, the energy

density per logarithmic frequency interval, normalised to the critical density of the Universe

ρc,

ΩGW(f) =
fSE(f)

ρcc2
. (26)

The critical density is

ρc =
3H2

0

8πG
, (27)

where H0 is the Hubble constant, commonly parametrized as

H0 = h100 × 100 km s−1 Mpc−1. (28)

The reduced Hubble parameter h100 has nothing to do with strain. The most common

quantity related to energy density to be plotted on sensitivity curves is ΩGWh
2
100 (figure

A3) as this removes sensitivity to the (historically uncertain) measured value of the Hubble

constant.

This quantity has one aesthetic advantage over the others: it automatically accounts

for there being less energy in low frequency waves of the same amplitude. However, unlike

characteristic strain, the area between the source and detector curves is no longer simply

related to the SNR.

2.5. Relating the descriptions

The dimensionless energy density in GWs ΩGW, spectral energy density SE, one-sided PSD

Sh, characteristic strain hc and frequency-domain strain h̃(f) are related via

H2
0ΩGW(f) =

8πG

3c2
fSE(f) =

2π2

3
f 3Sh(f) =

2π2

3
f 2 [hc(f)]2 =

8π2

3
f 4
∣∣∣h̃(f)

∣∣∣2 , (29)

using (17), (21), (25), (26) and (27). Corresponding expressions for the noise are obtained by

substituting Sn(f) for Sh(f), hn(f) for hc(f) and ñ(f) for h̃(f).

7



3. Types of source

GW signals can be broadly split into three categories: those from well-modelled sources, for

which we have a description of the expected waveform; stochastic backgrounds, for which

we can describe the statistical behaviour; and unmodelled (or poorly-modelled) transient

sources. The classic example of a well-modelled source is the inspiral of two compact objects,

this is discussed in section 3.1. Stochastic backgrounds can either be formed from many

overlapping sources, which could be modelled individually, or from some intrinsically random

process, these are discussed in section 3.2. An example of an unmodelled (or poorly-modelled)

transient source is a supernova; searches for signals of this type are often called burst searches

and are discussed in section 3.3.

3.1. Inspirals

Inspiralling binaries may the most important GW source. They spend a variable amount of

time in each frequency band. If φ is the orbital phase, then the number of cycles generated

at frequency f can be estimated as

Ncycles =
f

2π

dφ

df
=
f 2

ḟ
, (30)

where an overdot represents the time derivative and φ̇ = 2πf . The squared SNR scales with

Ncycles, so it would be expected that hc(f) ≈
√
Ncycles|h̃(f)|.

The form for hc can be derived from the Fourier transform in the stationary-phase

approximation. Consider a source signal with approximately constant (root-mean-square)

amplitude h0 and central frequency f ′. In this case,

h(t) =
√

2h0 cos [φ(t)] , (31)

h̃(f) =
h0√

2

∫ ∞
−∞

dt exp

{
2πi

[
φ(t)

2πt
− f

]
t

}
+ exp

{
−2πi

[
φ(t)

2πt
+ f

]
t

}
. (32)

Without loss of generality, we can assume an initial phase of zero, such that φ(0) = 0. The

largest contribution to the integral comes from where the argument of the exponentials is

approximately zero. For the first term, this occurs when f = f ′, then the term in brackets is[
φ(t)

2πt
− f

]
f = f ′

= f ′ + ḟ ′t+O
(
t2
)
− f ′ = ḟ ′t+O

(
t2
)
. (33)

The higher-order terms cause the expoential to oscillate rapidly, such that these terms

integrate to zero and may be neglected. Performing a similar expansion about f = −f ′ for
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the second term in (32), and then evaluating the Gaussian integrals gives

h̃(f) ' h0√
2

∫ ∞
−∞

dt exp
(

2πiḟ ′t2
)

+ exp
(
−2πiḟ ′t2

)
' h0√

2ḟ ′
. (34)

From (17) and (34), the characteristic strain for inspiralling sources is given by (Finn and

Thorne, 2000)

hc(f) =

√
2f 2

ḟ
h0 . (35)

Equation (17) should be considered as the definition of characteristic strain and (35) a

consequence of it for inspirals. Equation (35) is the relation between hc(f) and the

instantaneous root-mean-square amplitude h0 for an inspiralling source; for other types

of source a new relation satisfying (19) has to be found.

3.2. Stochastic backgrounds

Another important source of GWs is that of stochastic backgrounds, which can be produced

from a large population of unresolvable sources. These can be at cosmological distances, where

it is necessary to distinguish the frequency in the source rest frame fr from the measured

frequency f ; the two are related through the redshift z via fr = (1 + z)f . The comoving

number density of sources ν producing the background is also a function of redshift; if the

sources producing the background are all in the local Universe, then simply set ν(z) = ν0δ(z)

and replace dL(z) with d in all that follows, where dL(z) and d are respectively the luminosity

and comoving distances to the source, dL(z) = (1 + z)d.

We shall assume that the individual sources are binaries, in which case the number

density of sources is also a function of the component masses. It is convenient to work in

terms of the chirp mass, defined as M = µ3/5M2/5, where µ is the reduced mass and M is

the total mass of the binary. The comoving number density of sources shall be represented

by ν(z,M).

Equation (29) gives an expression for the energy density in GWs per logarithmic frequency

interval,

fSE(f) =
πc2

4G
f 2 [hc(f)]2 . (36)

The total energy emitted in the logarithmic frequency interval d (log fr) by a single binary in

the population is [dEGW/d(log fr)] d(log fr); the energy density may be written as

fSE(f) =

∫ ∞
0

dz
dν

dz

1

(1 + z)

1

[dL(z)]2
dEGW

d (log fr)
, (37)
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where the factor of (1 + z)−1 accounts for the redshifting of the energy.

For simplicity, consider the background to comprise of binaries in circular orbits, with

frequencies fGW = fr/2, which are far from their last stable orbit. The energy radiated may

then be calculated using the quadrupole approximation (Peters and Mathews, 1963). The

energy in GWs from a single binary per logarithmic frequency interval is

dEGW

d (log fr)
=
G2/3π2/3

3
M5/3f 2/3

r (38)

between minimum and maximum frequencies set by the initial and final radii of the binary

orbit respectively. Here, we assume that the maximum and minimum frequencies are outside

of the range of our detector and hence can be neglected. Using (36), (37) and (38), an

expression for characteristic strain can now be found (Sesana et al., 2008)

[hc(f)]2 =
4G5/3

3π1/3c2
f−4/3

∫ ∞
0

dz

∫ ∞
0

dM d2ν

dz dM
1

[dL(z)]2

(
M5

1 + z

)1/3

. (39)

From (39) it can be seen that the characteristic strain due to a stochastic background

of binaries is a power law in frequency with spectral index α = −2/3. The amplitude of

the background depends on the population statistics of the binaries under consideration via

ν(z,M). The power law is often parametrised as

hc(f) = A

(
f

f0

)α
, (40)

and constraints are then placed on A. In practice, this power law also has upper and lower

frequency cut-offs related to the population of source objects.

A stochastic background from other sources, such as cosmic strings or relic GWs from

the early Universe, can also be written in the same form as (40), but with different spectral

indices: α = −7/6 for cosmic strings or α in the range −1 to −0.8 for relic GWs (Jenet et al.,

2006).

An alternative method for graphically representing the sensitivity of a GW detector

to stochastic backgrounds, called the power-law-integrated sensitivity curve, was suggested

by Thrane and Romano (2013). This method accounts for the there being power across all

frequencies in the sensitivity band by integrating the noise-weighted signal over frequency.

As our aim here is to present stochastic backgrounds alongside other types of sources for

comparison, we will not use this approach.

3.3. Burst sources

Some sources of GWs can produce signals with large amplitudes, greater than the detector

noise. The typical duration of such a signal is short, of the order of a few wave periods, and so
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there is not time to accumulate SNR in each frequency band as for inspirals. As a consequence,

waveform models are not required for detection; we simply rely on identifying the excess power

produced by these burst sources. Typically, we may be looking for signals from core-collapse

supernovae (Ott, 2009), the late stages of merging compact binaries (Abadie et al., 2012b),

cosmic strings (Aasi et al., 2014a), or more generally, signals from any unexpected or poorly

modelled sources.

Burst searches are often carried out using time–frequency techniques. The data stream

from a detector is temporally split into segments, the length of which can be tuned to

give greater sensitivity to particular sources. Each segment is then transformed into the

frequency domain, whitened and normalised to the noise spectrum of the detector to produce

a time–frequency plot. Potential GW signals are identified by searching for clusters of pixels

that contain an excess of power (e.g., Abadie et al., 2012a).

The presence of excess power across a number of pixels eliminates modelled noise sources,

but such a cluster may also be caused by atypical noise within a detector. We can improve our

confidence of a GW signal by making use of information obtained from other GW detectors.

Signals across a network of detectors should have compatible arrival times (given the sky

direction) as well as consistent amplitudes, frequencies and shapes of the waveform. Different

pipelines are currently in use that analyse the signal consistency in different ways: both

coincidence searches (Chatterji et al., 2004) and fully coherent methods (Klimenko et al.,

2008) are used.

An important aspect of burst search algorithms is to accurately estimate the noise

properties within each time segment. To this extent, null data streams can be constructed

that are insensitive to real GW signals. In order to estimate the false alarm rate, the data

from different detectors can be shifted in time to remove any genuine coincident GW signals

(Cannon, 2008). These time-shifts are then analysed to simulate the potential occurence of

coincident noise events. The algorithms are tuned using time-shifted data to ensure there is

no bias in the final search.

As discussed in 3.1, the expected relation between hc(f) and a typical waveform h̃(f) is

hc(f) =
√
Ncycles

∣∣∣h̃(f)
∣∣∣ , (41)

where Ncycles is the number of cycles of radiation generated by the source, which is of order

unity for bursts.

An alternative characterisation of the signal amplitude commonly used for burst sources

is the root-sum-square of the waveform polarisations:

h2
rss =

∫
dt |h+(t)|2 + |h×(t)|2 . (42)

For a linearly polarised GW, with h̃(f) constant across the bandwidth ∆f , this is
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approximately related to the characteristic strain via

hrss '
∣∣∣h̃(f)

∣∣∣√∆f , (43)

where we have neglected the detector response functions (see section 4.1), which are of order

unity. In this work, we favour a constant hc(f) rather than hrss for consistency with the other

types of source where the bandwidth is detector specific.

4. Detectors

In this section we introduce the detector noise curves used in Appendix A. We begin with

a description of the basic operation of detectors. We then discuss ground-based detectors,

space-based detectors and PTAs in turn. The latter function somewhat differently than

conventional interferometers, so we include a brief introduction to PTA analysis. References

for the noise curves used for individual detectors can be found in the relevant subsections and

further information about the detectors can be discovered in these. Detectors are frequently

upgraded and redesigned, hence, while these curves are believed to be correct at the time

of writing, it is best to check for updates from the appropriate science teams before relying

on the details given here, although we hope that they shall remain accurate enough for

illustrative purposes.

4.1. Operating principle of an interferometric detector

All of the man-made detectors discussed in this section utilise the principle of interferometry.

Such detectors work by taking a beam of monochromatic light and splitting it into two beams

travelling at some angle to each other. Each beam is passed in to an optical cavity where it

undergoes a number of round trips before being recombined to form an interference pattern.

The ends of the cavity are, in the ideal case, freely floating test masses which move relative

to each other in response to a passing GW, this effect is measured by observing the changing

interference pattern.

The response of a detector to an incident plane-fronted GW depends upon the relative

orientations of the detector and the incoming wave. Let us choose the origin of our coordinate

system to be the beam-splitter of the interferometer, and li1 and li2 to be unit 3-vectors

pointing along the two arms. In the absence of noise the output of the detector is the

difference in strain between the two arms (Thorne, 1987)

h(t) =
1

2
hij
(
li1l

j
1 − li2l

j
2

)
, (44)

where hij are the spatial components of the GW metric perturbation. Let r̂i be the unit

3-vector pointing towards the source of the GWs, with spherical polar angles (θ, φ) relative
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to some axes fixed to the detector, and let pi and qi be unit vectors orthogonal to r̂i. We can

now define the basis tensors

H+
ij = pipj − qiqj , (45)

H×ij = piqj + qipj . (46)

There remains a freedom in the coordinates described, a rotation of pi and qi through an

angle ψ about r̂i known as the polarization angle. For a single frequency component, the

strain induced by a GW may be written as

hij = A+H
+
ij cos (2πft) + A×H

×
ij cos (2πft+ ∆φ) , (47)

where A+ and A× are the amplitudes of the two polarisation states. Combining (44) and

(47) allows the detector output to be written as

h(t) = F+(θ, φ, ψ)A+ cos (2πft) + F×(θ, φ, ψ)A× cos (2πft+ ∆φ) , (48)

where the response functions inherit their angular dependence from the choice of coordinates

F+(θ, φ, ψ) =
1

2
H+
ij

(
li1l

j
1 − li2l

j
2

)
, (49)

F×(θ, φ, ψ) =
1

2
H×ij

(
li1l

j
1 − li2l

j
2

)
. (50)

The response function of a two-arm interferometric detector is quadrupolar, an example

is plotted in figure 1. Throughout this paper, detector sensitivity refers to the polarisation

and sky averaged sensitivity F , where

F 2 =

∫ 2π

0

dψ

2π

∫ 2π

0

dφ

2π

∫ π

0

sin θ dθ

2

[
F+ (θ, φ, ψ)2 + F× (θ, φ, ψ)2] . (51)

For a single 90◦-interferometer, such as LIGO, the sky and polarisation averaged response is

F =
√

1/5 ≈ 0.447.

A detector may consist of several interferometers. Let Fa be the averaged response of the

a-th interferometer, the average response of a network of k detectors is obtained by adding

in quadrature,

F 2
Total =

1

k

k∑
a=1

F 2
a . (52)

The averaging in (51) assumes a uniform distribution of polarisation angles ψ. This

is the case for a stochastic background; however, for a non-inspiralling circular binary, the

polarisation is a function of the two spherical polar angles (ι, ξ) specifying the orientation

of the binary’s orbital angular momentum. Here, ι is the inclination angle, the polar angle

between the orbital angular momentum and the line joining the source to the detector (−r̂)

13



Figure 1: The angular response function of an interferometric detector shown both

as a surface plot and in an Aitoff–Hammer projection. The quantity that is plotted

is is the polarisation average,
[
(1/2π)

∫
dψ (F+)2 + (F×)2

]1/2
. The response is a

function of two sky angles, θ and φ, and varies between 0 and 1. The two detector

arms lie in the x–y plane either side of one of the zeros in the response.

and ξ is the azimuthal angle around the same line. In this case, to characterise the detector

sensitivity we average over all four angles (θ, φ, ι, ξ). If the binary is inspiralling, then the

polarisation depends on still more parameters which need to be averaged over. These more

complicated averages all have the property that they depend on both the detector and the

source, hence they are unhelpful for our present purpose separating the source amplitude

from the detector sensitivity. Additionally, the different averages do not work out to be so

different from each other: Finn and Chernoff (1993) calculated the sensitivity for a detector

with the LIGO geometry averaged over the four angles (θ, φ, ι, ξ) as
√

4/25 = 0.4 times

peak sensitivity, which should be compared with the value
√

1/5 ≈ 0.447 above. The effect

of replacing the true sensitivity with the sky-averaged sensitivity for the LISA detector

was considered in detail by Vallisneri and Galley (2012); they also found there is a small

difference when considering an entire population of sources. For the remainder of this paper

the three-angle average defined in (51) is used.

4.2. Ground-based detectors

Ground-based detectors are the most numerous. A collection of interferometric detectors are

listed in table 1, these are sensitive to GWs in the frequency range O(10–103) Hz. They all

simulate free-floating test masses by suspending a mass from a pendulum system with natural

frequency far removed from than that of the GW. Their sensitivity curves include narrow

lines that arise from noise sources in the instrument, including resonances in the suspension

14



Table 1: Summary of ground-based laser interferometers.

Detector Country Arm length Approximate date Generation

GEO600a Germany 600 m 2001–present First
TAMA300b Japan 300 m 1995–present First
iLIGOc USA 4 km 2004–2010 First
Virgod Italy 3 km 2007–2010 First
aLIGOe USA 4 km est. 2015 Second
AdVf Italy 3 km est. 2016 Second
KAGRAg Japan 3 km est. 2018 Second
ETh — 10 km est. 2025 Third

aGrote (2010), bAndo (2002), cAbbott et al. (2009),
dAccadia et al. (2012), eHarry (2010), f Acernese et al. (2009), gSomiya (2012), hHild et al. (2011).

system and electrical noise at multiples of 60 Hz: these have been removed in the Appendix A

figures for clarity. The detectors fall broadly into three categories: first-generation detectors,

which have already operated; second-generation detectors currently under construction; and

third-generation detectors at the planning stage.

The most notable ground-based detectors are LIGO and Virgo, which work in

collaboration, supported by GEO600. LIGO, Virgo and GEO600 have completed science

runs as first-generation detectors (e.g., Abadie et al., 2010). As LIGO and Virgo are

currently being upgraded their initial configurations are now referred to as Initial LIGO

(iLIGO) and Initial Virgo (iVirgo) respectively. The upgraded, second-generation versions

are referred to as Advanced LIGO (aLIGO) and Advanced Virgo (AdV) respectively. LIGO

has two observatories: one at Hanford, Washington, which has two detectors; and another at

Livingston, Louisiana. There is an agreement to move one of the upgraded Hanford detector

systems to a location in India (Iyer et al., 2011; Unnikrishnan, 2013). The GEO600 detector

is not subject to a major upgrade plan, but since summer 2009 it has been enhanced by

a series of smaller improvements, notably improving high-frequency sensitivity (GEO-HF;

Willke et al., 2006). The advanced detectors should start operation in the next couple of

years, with LIGO-India following further in the future.

TAMA300 is a Japanese first-generation detector. Its successor, currently under

construction, is the Kamioka Gravitational Wave Detector (KAGRA), formerly the Large-

scale Cryogenic Gravitational wave Telescope (LCGT), which is located underground in the

Kamioka mine. It employs more sophisticated noise-reduction techniques than LIGO or

Virgo, such as cryogenic cooling.

The Einstein Telescope (ET) is an ambitious proposal to construct an underground

third-generation detector. Its location would provide shielding from seismic noise, allowing it

to observe frequencies of (10–104) Hz.
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We use an interpolation to the data published on https://wwwcascina.virgo.infn.it/

advirgo/ (2013) for the AdV sensitivity curve, an interpolation to the data for version D of the

KAGRA detector published on http://gwcenter.icrr.u-tokyo.ac.jp/en/researcher/

parameter (2013) and analytic fits to the sensitivity curves from Sathyaprakash and Schutz

(2009) for the remaining detectors.

4.3. Space-based detectors

Space-based detectors work on similar principles to ground based detectors, but with the test

masses residing inside of independent, widely separated satellites. Space-based detectors are

sensitive to lower frequency GWs than their ground-based counterparts; this is partly because

space-based detectors can have much longer arms, and partly because they are unaffected by

seismic noise which limits the low frequency performance of ground-based detectors.

The canonical design for a space-based detector is the Laser Interferometer Space Antenna

(LISA), which is sensitive to millihertz GWs. LISA would consist of three satellites flying

in a triangular constellation with arms of length 5 × 109 m in a 1 AU orbit around the

Sun, trailing the Earth by 20◦. The laser arms in a LISA-like detector are not a cavity, the

light only travels once along each arm. eLISA is a rescoped version of LISA designed to

probe the same frequency range, while proposals such as the Advanced Laser Interferometer

Antenna (ALIA), Big Bang Observer (BBO) and Deci-hertz Interferometer GW Observatory

(DECIGO) are designed to probe decihertz GWs.

4.3.1. LISA and eLISA The instrumental noise curves for LISA are approximated by the

analytic fit given by Sathyaprakash and Schutz (2009), which we use for the plots in Appendix

A. When observing individual sources with LISA there is an additional contribution to the

noise from a background of unresolvable binaries. This is not included here as we consider

the background as a source of GWs (see section 5.2.2). eLISA is a rescoped version of the

classic LISA mission, the main differences are shorter arms (109 m instead of 5 × 109 m),

two laser arms instead of three, and a different orbit (drifting away from Earth instead of

20◦ Earth trailing). The effect of these changes is a slightly reduced peak sensitivity and a

shift to higher frequencies. We use an analytic fit to the instrumental noise curve given by

Amaro-Seoane et al. (2013).

4.3.2. DECIGO, ALIA and BBO These missions are designed to probe the decihertz region

of the GW spectrum; they are considerably more ambitious than the LISA or eLISA mission

and their launches will be further into the future. We use a simple analytic fit to the sensitivity

curve for ALIA (Bender et al., 2013), while for DECIGO and BBO, fits to the sensitivity

curves given by Yagi and Seto (2011) are used.
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4.4. Pulsar timing arrays

PTAs can be thought of as naturally occurring interferometers with galactic-scale arm lengths.

Accordingly, they are sensitive to much lower frequencies than the detectors previously

discussed. Each pulsar is a regular clock and the measured pulse arrival time can be compared

against a prediction, leaving a residual which includes the effects of passing GWs. Using an

array of these pulsars spread across the sky allows us to correlate residuals between different

pulsars, to exploit the fact that GWs influence all pulsars whereas intrinsic pulsar noise does

not. The correlation between different pulsars depends only on their angular separation on

the sky, and has a distinctive shape, known as the Hellings and Downs curve (Hellings and

Downs, 1983).

The redshift of the rate of arrival of pulses for a pulsar at a distance L from the Solar-

System barycentre (SSB), in the direction of the unit spatial vector p̂ induced by a GW

travelling in direction of the unit vector Ω̂ is (Anholm et al., 2009)

z(t, Ω̂) =
1

2

p̂j p̂i

1 + Ω̂ · p̂

[
hPulsar
ij

(
t− L

c
, Ω̂

)
− hEarth

ij (t, Ω̂)

]
=

1

2

p̂j p̂i

1 + Ω̂ · p̂
∆hij(t, Ω̂) . (53)

The redshift includes two terms: the pulsar term and the Earth term. The pulsar term is

often neglected in PTA analysis as it can be considered as an extra noise term which averages

to zero across the array. The experimentally measured quantity is not the redshift but the

timing residual, the two are related via

R(t, Ω̂) =

∫ t

0

dt′ z(t′, Ω̂) . (54)

All of the pulsars, and the Earth, are subject to the same metric-perturbation field. This

may be expressed in terms of its Fourier transform

hij(t, ~r) =
∑

A=+,×

∫
df

∫∫
S2

dΩ̂ h̃A(f, Ω̂)eAij(Ω̂) exp

[
2πif

(
t− Ω̂ · ~x

c

)]
, (55)

where eAij(Ω̂) is the A polarisation basis tensor for direction Ω̂, and ~r is the spatial position.

Choosing the SSB as the origin of our coordinate system, so the pulsar is at position Lp̂,

gives

∆hij(t, Ω̂) =
∑

A=+,×

∫
df h̃A(f, Ω̂)eAij(Ω̂) exp (2πift)

{
exp

[
−2πifL

(
1 + p̂ · Ω̂

)]
− 1
}
.

(56)

From (53) and (56), the Fourier transform of the redshift z̃(f, Ω̂) can be identified as

z̃(f, Ω̂) =
{

exp
[
−2πifL

(
1 + p̂ · Ω̂

)]
− 1
} ∑
A=+,×

h̃A(f, Ω̂)FA(Ω̂) , (57)
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where

FA(Ω̂) =
eAij(Ω̂)p̂j p̂i

2
(

1 + Ω̂ · p̂
) . (58)

The function FA(Ω̂) may be regarded as the PTA equivalent of the detector response functions

in (49). The stochastic background of GWs is fully characterised by the one-sided PSD via

the expectation value〈
h̃∗A(f, Ω̂)h̃A′(f ′, Ω̂′)

〉
=

1

2
Sh(f)δ(2)(Ω̂, Ω̂′)δAA′δ(f − f ′) , (59)

where δ(2)(Ω̂, Ω̂′) is the delta-function on the sphere. From (57) and (59), the expectation of

the product of signals from two different pulsars in directions p̂1 and p̂2 may be evaluated as

〈z̃1(f)z̃∗2(f ′)〉 =
1

2
Sh(f)δ(f − f ′)Γ(f) , (60)

where

Γ(f) =
∑

A=+,×

∫∫
S2

dΩ̂
{

exp
[
2πifL1

(
1 + Ω̂ · p̂1

)]
− 1
}

×
{

exp
[
−2πifL2

(
1 + Ω̂ · p̂2

)]
− 1
}
FA

1 (Ω̂)FA
2 (Ω̂) . (61)

The overlap function Γ(f) tends to a constant value in the limit that the distances to the

pulsars are large compared to the wavelength of GWs; PTAs operate in this limit (Mingarelli

and Sidery, 2014), so the overlap may be approximated as a constant,

Γ(f) ≈ Γ0 =
∑

A=+,×

∫∫
S2

dΩ̂ FA
1 (Ω̂)FA

2 (Ω̂) . (62)

Neglecting the exponential terms in the overlap is the frequency-domain equivalent of

neglecting the pulsar term in (53). The integral may be evaluated to give an expression

depending only on the angle θ between the two pulsars; this is the famous Hellings and

Downs curve, shown in figure 2,

Γ0 =
1

2
+

3ξ

2

(
ln ξ − 1

6

)
, (63)

where ξ = (1− cos θ)/2.

The sensitivity bandwidth of a PTA is set by the sampling properties of the data set.

If measurements are spaced in time by δt and taken for a total length of time T , then the

PTA is sensitive to frequencies in the range (1/T ) < f < (1/δt). The characteristic strain

that the PTA is sensitive to scales linearly with f in this range. This gives the wedge-shaped
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Figure 2: The Hellings and Downs (1983) curve, the correlation between two

pulsars separated on the sky by an angle θ.

curves plotted in Appendix A. The absolute value of the sensitivity is fixed by normalising to

a calculated limit at a given frequency for each PTA. For a discussion of the sensitivities of

PTA to both individual sources and stochastic background, see Moore et al. (2014).

There is a discrepancy between the treatment of PTA sensitivity curves here and the

higher frequency detectors discussed in sections 4.2 and 4.3. When observing a long-lived

source, such as an inspiral, with a high frequency detector, the convention was to define a

characteristic strain to satisfy (19). Here, the convention is to leave the strain untouched

and instead adjust the PTA sensitivity curve with observation time, again to satisfy (19).

This discrepancy is an unfortunate result of the conventions in use by the different GW

communities; however, it is natural given the sources under observation. When observing

a transient source, such as a burst or inspiral, which changes within the lifetime of the

detector, it is natural to consider the detector as performing constantly while the signal

changes. However, when observing a monochromatic source or a stochastic background,

which is unchanging over the detector lifetime, it is more natural to consider the source as

being fixed and the sensitivity of the detector gradually improving. All that is required by

the definition in (19) is that the ratio hc(f)/hn(f) is constant.

4.4.1. Current PTAs The PTAs currently in operation are the European Pulsar Timing Array

(EPTA‖; Kramer and Champion, 2013), the Parkes Pulsar Timing Array (PPTA¶; Hobbs,

2013) based in Australia, and the North American Nanohertz Observatory for Gravitational

waves (NANOGrav+; McLaughlin, 2013). There are published limits on the amplitude of the

‖ http://www.epta.eu.org/
¶ http://www.atnf.csiro.au/research/pulsar/ppta/
+ http://nanograv.org/
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stochastic background from all three detectors: the most recent from EPTA is van Haasteren

et al. (2011), from PPTA is Shannon et al. (2013) and from NANOGrav is Demorest et al.

(2013). The limits from the existing detectors are all of a similar magnitude.

In Appendix A we use the EPTA limit based on an analysis of 5 pulsars over approximately

10 years. The curve labelled “EPTA” assumes that all the pulsar were timed identically

every 2 weeks with an r.m.s. error in each timing residual of 100 ns. The NANOGrav limit is

comparable to this, and the PPTA limit is a factor ∼ 2.5 lower.

4.4.2. The International Pulsar Timing Array Combining the existing arrays would yield

a single PTA using approximately 4 times as many pulsars; this consortium of consortia is

known as the International Pulsar Timing Array (IPTA∗; Manchester and IPTA, 2013). The

IPTA curve plotted in the figures assumes 20 pulsars timed every 2 weeks for 15 years with

an r.m.s. error in each timing residual of 100 ns.

4.4.3. SKA The next great advancement in radio astronomy shall come with the completion

of the Square Kilometre Array (SKA; Dewdney et al., 2009). This shall greatly increase the

sensitivity of pulsar timing (Kramer et al., 2004). The sensitivity curves plotted in Appendix

A for the SKA assumes 50 pulsars timed every 2 weeks for 20 years with an r.m.s. error in

each timing residual of 30 ns. Our choice of 50 pulsars might be conservative, it is possible

that the SKA will discover many more suitable milli-second pulsars than this throughout its

operation, in which case the corresponding sensitivity curve would become lower.

5. Astrophysical sources

All the sources described here are represented by shaded boxes in Appendix A. Sources

with short durations (i.e., burst sources) and sources that evolve in time over much longer

timescales than our observations are drawn with flat-topped boxes for hc(f). Inspiraling

binaries, or stochastic backgrounds of binaries, are drawn with a sloping top proportional to

f−2/3 for hc(f), which is result derived in section 3.2. The width of the box gives the range

of frequencies sources of a given type can have while remaining at a detectable amplitude.

The question of the height of the box is more problematic; it would be desirable to normalise

each box so that there was a fixed event rate, say one event per year with an amplitude

lying within the box. However, for many of the sources considered, the event rate is subject

to a large degree of uncertainty (and estimates change rapidly as our understanding of the

astrophysics improves). Consequently, we take the more definite, but somewhat arbitrary,

approach that for each type of source a fiducial event is nominated (with parameters or

amplitude detailed in the relevant section below) and the amplitude of this event is used to

position the top of the box. The parameters for each fiducial event are chosen such that the

∗ http://www.ipta4gw.org/
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resulting amplitude is roughly consistent with the optimistic end of current predictions: the

boxes indicate where we could plausibly find GW sources; the actual event rates could turn

out to be substantially lower than this upper bound.

5.1. Sources for ground-based detectors

5.1.1. Neutron-star binaries The inspiral and merger of a pair of neutron stars is the primary

target for ground-based detectors. The expected event rate for this type of source is uncertain,

but estimates centre around γNS−NS = 1.3× 10−4 Mpc−3 yr−1 (Abadie et al., 2012c). Plotted

in Appendix A are boxes labelled “compact binary inspirals” with amplitudes such that a

ratio hc/hn = 16 is produced for Advanced LIGO at peak sensitivity and a width between

(3–300) Hz, corresponding to expected observable frequencies.

5.1.2. Supernovae Simulations of core-collapse supernovae show that GWs between (102–

103) Hz can be produced (Kotake et al., 2006). The GW signal undergoes O(1) oscillation

and is hence burst-like. Dimmelmeier et al. (2002) calculate the average maximum amplitude

of GWs for a supernova at distance r as

hmax = 8.9× 10−21

(
10 kpc

r

)
. (64)

The event rate for supernovae is approximately γSN = 5 × 10−4 Mpc−3 yr−1. The boxes

labelled “supernova” plotted in Appendix A correspond to a distance r = 300 kpc with the

frequency range quoted above. The LIGO and Virgo detectors have already placed bounds

on the event rate for these sources (Abadie et al., 2012a).

5.1.3. Continuous waves from rotating neutron stars Rotating neutron stars are a source of

continuous GWs if they possess some degree of axial asymmetry (Abbott et al., 2007; Prix,

2009; Aasi et al., 2013). The signals are near monochromatic with a frequency twice the

rotation frequency of the neutron star, and are a potential source for ground-based detectors.

The amplitude of the GWs depends upon the deformation of the neutron star, and its spin

frequency. The magnitude of the distortion depends upon the neutron star equation of state

and the stiffness of the crust, which are currently uncertain (Chamel and Haensel, 2008;

Lattimer, 2012). Deformations can also be supported by internal magnetic fields (Haskell

et al., 2008). Several known pulsars could be sources for the advanced detectors and upper

limits from the initial detectors help to constrain the deformations.

The boxes labelled “pulsars” plotted in Appendix A correspond to the upper limits

placed on a GW signal from the Crab pulsar (Aasi et al., 2014b), extrapolated across a

frequency range between (20–103) Hz. The extrapolation was performed using the scaling

h0 ∝
√
ḟ/f (Aasi et al., 2014b) (this is the spin-down limit, which assumes that the only
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loss of energy from the system is due to GW emission) and (35). This gives hc ∝ f 1/2; higher

frequency sources are observed at a louder SNR because they undergo more cycles.

5.2. Sources for space-based detectors

For a review of the GW sources for space-based missions see, for example, Amaro-Seoane

et al. (2013), Gair et al. (2013) or Jennrich et al. (2011).

5.2.1. Massive black-hole binaries Space-based detectors shall be sensitive to equal-mass

mergers in the range (104–107)M�. Predictions of the event rate for these mergers range

from O(10–100) yr−1 for eLISA with SNRs of up to 103 (Seoane et al., 2013). The large

range in the rate reflects our uncertainty in the growth mechanisms of the supermassive

black hole population (Volonteri, 2010). A 106M� binary can be observed out to a redshift

z ∼ 8 with an SNR of 100 (Seoane et al., 2013). This fiducial source gives the amplitude of

the boxes labelled “≈ 10 6 solar mass binaries” in Appendix A. The range of frequencies is

(3× 10−4–3× 10−1) Hz, extrapolated using the slope hc(f) ∝ f−2/3 derived in section 3.2.

5.2.2. Galactic white-dwarf binaries For space-based detectors, these are the most numerous

GW sources; they are also the only guaranteed source since several detectable systems (known

as verification binaries) have already been identified by electromagnetic observations (Stroeer

and Vecchio, 2006).

Galactic binaries divide into two classes: the unresolvable and the resolvable galactic

binaries. The unresolvable binaries overlap to form a stochastic background as discussed in

section 3.2. The distinction between resolvable and unresolvable is detector specific; here we

choose LISA. This boundary shall not be too different for eLISA, but would move substantially

for decihertz detectors. Plotted in Appendix A with the label “unresolvable galactic binaries”

is the estimate of this background due to Nelemans et al. (2001) where an observation time

of one year has been assumed,

hc(f) = 5× 10−21

(
f

10−3 Hz

)−2/3

. (65)

Estimates for the event rate of resolvable binaries centre around O(103) events for eLISA.

The boxes plotted in Appendix A with the label “resolvable galactic binaries” have a

ratio hc/hn = 50 for eLISA at its peak sensitivity. The frequency range of the box is

(3× 10−4 –10−2) Hz, estimated from Monte Carlo population simulation results presented in

Amaro-Seoane et al. (2013).

5.2.3. Extreme mass-ratio inspirals EMRIs occur when a compact stellar-mass object

inspirals into a supermassive black hole. There is extreme uncertainty in the event rate for
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EMRIs due to the poorly constrained astrophysics in galactic centres (e.g., Merritt et al.,

2011); the best guess estimate is around 25 events per year with eLISA with SNR ≥ 20

(Seoane et al., 2013). The boxes labelled “extreme mass ratio inspirals” plotted in Appendix

A have a characteristic strain of hc = 3× 10−20 at 10−2 Hz, which corresponds to a 10M�
black hole inspiralling into a 106M� black hole at a luminosity distance of 1 Gpc. The

frequency width of the box is somewhat uncertain; EMRI events can occur around a black

hole of any mass, and hence EMRIs can, in principal, occur at any frequency. The boxes in

Appendix A are drawn with a width comparable to that of the LISA sensitivity curve.

5.3. Sources for PTAs

5.3.1. Supermassive black hole binaries The main target for PTAs is a stochastic background

of GWs produced by a population of supermassive black-hole binaries at cosmological distances

(Sesana et al., 2008). Supermassive black holes are known to lie at the centres of most galaxies

and black-hole mergers are associated with the mergers of their host galaxies (Volonteri et al.,

2003; Ferrarese and Ford, 2005). The current best 95% confidence limit for the amplitude

of the stochastic background is hc = 2.7 × 10−15 at a frequency of f0 = 1 yr−1 (Shannon

et al., 2013). There is strong theoretical evidence that the actual background lies close to

the current limit (Sesana, 2013). The distribution of source amplitudes with frequency is

dependent on the chirp mass distribution of binaries, which is astrophysically uncertain.

Reflecting our lack of information about the true shape of this box, we draw it with a flat

top in characteristic strain.

5.3.2. Stochastic background of supermassive binaries Supermassive black-hole binaries at

higher frequencies are inspiralling faster and, hence, there are fewer of them per frequency

bin. At a certain frequency, these sources cease to be a background and become individually

resolvable (Sesana et al., 2008; Sesana et al., 2009). It is currently unclear whether PTAs shall

detect an individual binary or a stochastic background first. Plotted in Appendix A with

the label “stochastic background” is a third of the current limit with a cut off frequency of

f = 1 yr−1. This is suggested by Monte Carlo population studies (Sesana et al., 2008), which

give a range of plausible amplitudes the mean of which is plotted here. For the resolvable

sources, labelled “≈ 10 9 solar mass binaries”, the amplitude of the current limit is plotted

between (3× 10−9 –3× 10−7) Hz.

5.4. Cosmological sources

In addition to the sources above, early Universe processes, such as inflation (Grishchuk, 2005)

or a first-order phase transition (Binétruy et al., 2012), could have created GWs. More

speculatively, it has been hypothesised that cosmic strings could also be a potential source

(Damour and Vilenkin, 2005; Binétruy et al., 2012; Aasi et al., 2014a). These relic GWs

23



allow us to explore energy scales far beyond those accessible by other means, providing

insight into new and exotic physics. The excitement surrounding the tentative discovery

by BICEP2 of the imprint of primordial GWs (generated during inflation) in the cosmic

microwave background (Ade et al., 2014), and the subsequent flurry of activity, has shown the

scientific potential of such cosmological GWs. These GW signals are so alluring because they

probe unknown physics; this also makes them difficult to predict. Cosmological stochastic

backgrounds have been predicted across a range of frequencies with considerable variation

in amplitude. As a consequence of this uncertainty, although we could learn much from

measuring these signals, we have not included them amongst the sources in Appendix A.

The sensitivity curves plotted in Appendix A would change substantially for stochastic

backgrounds. This is because searches for stochastic backgrounds utilise the cross correlation

of the outputs of multiple detectors for detection (Allen and Romano, 1999; Maggiore, 2000),

instead of the individual outputs. Therefore, the sensitivity of a network of ground based

detectors is much greater than that of any individual detector. The shape of the sensitivity

curve for a stochastic background would also differ from the curves plotted here, for a

discussion of this point see Thrane and Romano (2013).

6. Concluding remarks

When quantifying the sensitivity of a GW detector and the loudness of a GW source, there

are three commonly used quantities: the characteristic strain, the power spectral density,

and the spectral energy density. We have carefully defined these quantities and derived the

relationships between them. The characteristic strain (section 2.2) is most directly related to

the SNR, the PSD is mostly closely related to the mean square amplitude in the detector,

and the energy density has a clear physical interpretation. We have produced example plots

using each of these quantities for a wide range of detectors and sources. The predicted source

amplitudes are based on astrophysical estimates of the event rates and are subject to varying

degrees of uncertainty.] Interactive versions of these plots, with user-specified detectors and

sources, are available on-line at http://rhcole.com/apps/GWplotter. Trying to summarise

an entire field of astronomy on one plot is an impossible task; however, we hope that the

figures and analysis presented here provide useful insight.
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Figure A1: A plot of characteristic strain against frequency for a variety of

detectors and sources.
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Appendix A. Sensitivity curves

The plots in this section show all of the detectors and sources described in the main text.

Clearer, interactive versions of these plots, allowing for removal of any of the curves, may be

created and downloaded on-line, http://rhcole.com/apps/GWplotter. The detector noise

curves all have their resonance spikes removed for clarity.
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Figure A2: A plot of the square root of power spectral density against frequency

for a variety of detectors and sources.

Figure A3: A plot of the dimensionless energy density in GWs against frequency

for a variety of detectors and sources.
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