The road to Advanced LIGO's first observations

Photo: Michael Fyr

Jess Mclver for the LIGO Scientific Collaboration

G1400823

Outline

- Observing transient GW signals with Advanced LIGO
 - The Advanced LIGO interferometers
 - Projected commissioning timeline
 - Likely observing scenarios
- Detector characterization efforts
 - Past strategies, challenges, and successes
 - First glimpse of Livingston data quality

Outline

- Observing transient GW signals with Advanced LIGO
 - The Advanced LIGO interferometers
 - Projected commissioning timeline
 - Likely observing scenarios

Advanced LIGO

Advanced LIGO

Likely aLIGO observing scenarios

Aasi, et al. 2013 arxiv 1304.0670

How will we get there?

aLIGO instrumental improvements

G14008

LIGO Hanford observatory Each LIGO ifo has 4km arms

Full interferometer!

ALS

ETMY

Timeline: from eLIGO to aLIGO

Timeline: from eLIGO to aLIGO

Timeline: installation and testing

Timeline: the lead up to the first observing run

aLIGO project acceptance requires:

Subsystems meet their acceptance criteria Design and use documentation produced - Meet individual performance requirements Each interferometer locks for an extended time (2 hours) <---- Livingston has achieved this - Locking: acquire and maintain interferometer resonance under automated control

Commissioning at Livingston

Improving sensitivity

Increased laser power Noise hunting

- Transition to DC readout
- Improved optic alignment and angular

stability

Prior commissioning progression

The challenges of commissioning

- Many effects cannot be tested prior to large scale implementation
- Often noise sources stem from the interaction of different subsystems and cavities

Planning observing runs

Number of detections = Rate x Volume x Time

Epoch	Estimated Run Duration	$E_{\rm GW} = 10^{-2} M_{\odot} c^2$ Burst Range (Mpc)		BNS Range (Mpc)		Number of BNS	% BNS Localized within	
		LIGO	Virgo	LIGO	Virgo	Detections	$5 \mathrm{deg}^2$	$20 \mathrm{deg}^2$
2015	3 months	40 - 60	-	40 - 80	-	0.0004 - 3	-	-
2016-17	6 months	60 - 75	20 - 40	80 - 120	20 - 60	0.006 - 20	2	5 - 12
2017-18	9 months	75 - 90	40 - 50	120 - 170	60 - 85	0.04 - 100	1 - 2	10 - 12
2019 +	(per year)	105	40 - 80	200	65 - 130	0.2 - 200	3 - 8	8 - 28
2022+ (India)	(per year)	105	80	200	130	0.4 - 400	17	48

Planning observing runs

Epoch	Estimated Run	$E_{\rm GW} = 10^{-2} M_{\odot} c^2$ Burst Range (Mpc)		BNS Rang (Mpc)		Number of BNS	% BNS Localized within	
	Duration	LIGO	Virgo	LIGO	Virgo	Detections	5 deg^2	20deg^2
2015	3 months	40 - 60	-	40 - 80	-	0.0004 - 3	-	-
2016-17	6 months	60 - 75	20 - 40	80 - 120	20 - 60	0.006 - 20	2	5 - 12
2017-18	9 months	75 - 90	40 - 50	120 - 170	60 - 85	0.04 - 100	1 - 2	10 - 12
2019 +	(per year)	105	40 - 80	200	65 - 130	0.2 - 200	3 - 8	8 - 28
2022+ (India)	(per year)	105	80	200	130	0.4 - 400	17	48

Outline

- Detector characterization efforts
 - Past strategies, challenges, and successes
 - New approach to characterizing complex instrumentation
 - First glimpse of Livingston data quality

GW search pipelines are adversely affected by non-Gaussian data!

Long tails (outliers) in all-sky GW burst search background triggers greatly restrict achievable false alarm rate. Non-Gaussian noise confuses parameter estimation for all transient searches.

Example: NINJA2 search results

A normalized spectrogram of Hanford recolored noise only showing a transient event, or glitch, that happens to occur at the time of the injection. Solid blue – the 95% credible region for mass estimation based on EOBNRv2 analysis using recolored noise. Dashed pink – in Gaussian noise.

How glitchy were data in past runs?

G1400823

A 'good' day in S6

A 'bad' day in S6

What kinds of glitches affect the transient GW searches?

The **burst** search, requiring coherence and time coincidence between ifos, is more affected by very frequent glitches

Example: 'Grid' Glitches

What kinds of glitches affect the transient GW searches?

The **CBC** search is more affected by very loud glitches, which will convolve with many waveform templates in the template bank and pollute large chunks of data

Example: 'Spike' Glitches

First Glimpse Advanced LIGO Livingston DQ

Livingston full interferometer glitching

Calibrated DARM (differential arm length) glitch rate comparison

September 2010 (S6)

August 2014

An early DQ issue diagnosis

Calibrated DARM - 1 hour on August 9th 2014

35

An early DQ issue diagnosis

36

Through the lens of a single ifo burst GW pipeline

Calibrated DARM (differential arm length)

8 hours on August 9th 2014

The mechanism : major carry transition DAC glitching

- 38

The mechanism : major carry transition DAC glitching

First dubbed "zero crossing" glitches – identified when vertex cavity actuation signals crossed zero.

Actually a subset of a broader known issue with these DACs.

The mechanism : major carry transition DAC glitching

Major-carry transitions: single-code transitions that cause a most significant bit (to change because of the lower bits transitioning. **Examples:**

Offset applied to vertex cavity actuation

Offset applied to vertex cavity actuation

End station actuator glitches identified

The Detector Characterization group also identified this behavior in one of the end stations at the 2^16 MCT accounting for ~80% of loud glitches remaining after offset applied to vertex cavity actuators

Fs=16,384Hz, sec/fft = 1.00, overlap = 0.40, fft length=16,384, #-FFT = 199, bw = 1, in samples = 1,966K, low = 0.20

Conclusions

- With less than a year to go, making good progress toward commissioning and data analysis goals
 - Commissioning following a rapid timeline, advances in sensitivity expected and well understood
 - Detector characterization investment in instrumental expertise already fruitful in preparing to improve data quality for GW searches in O1
- All indications are that we will be ready!