# Second Generation Gravitational-Wave Observatories



**Chris Pankow** (University of Wisconsin–Milwaukee)

for the LIGO Scientific Collaboration and Virgo Collaboration

Rencontres du Vietnam August 8<sup>th</sup>, 2014

LIGO G1400721 v3









- Collaboration of nearly 1000 scientists, engineers, and researchers with ~100 institutions on four continents developing and operating a combined four laser interferometer gravitational-wave detectors
- Original construction began in late 90s, increasing sensitivity through early 2000s first generation ("initial") design sensitivity ( $\Delta L/L \sim 10^{-23}$  @ 200 Hz) reached in 2005
- Initial LIGO detectors decommissioned in 2010, Virgo soon thereafter, upgrades aiming to incrementally approach a x10 increase in sensitive range as well as broader frequency sensitivity over the next three years
- About 8 combined years (~3 years of coincidence) worth of observational data
- Perform searches for gravitational waves from compact binaries, deformations of neutron stars, stochastic background, supernovas, GRBs, etc...



G1301309-v9



G1301309-v9



#### S6/VSR2/3 Sensitivity



Horizon Distance: Distance to optimally oriented SNR 8 binary coalescence



#### S6/VSR2/3 Sensitivity



Horizon Distance: Distance to optimally oriented SNR 8 binary coalescence



# S6/VSR2/VSR3 Review

| source (non-spinning)                                           | current upper limit                                       | predicted rate                                           |
|-----------------------------------------------------------------|-----------------------------------------------------------|----------------------------------------------------------|
| neutron star binaries<br>(1.35 + 1.35 M₀)                       | 1.3 x 10 <sup>-4</sup> Mpc <sup>-3</sup> yr <sup>-1</sup> | 10 <sup>-6</sup> Mpc <sup>-3</sup> yr <sup>-1</sup>      |
| stellar mass BH binaries<br>(5 + 5 M₀)                          | 6.4 x 10 <sup>-6</sup> Mpc <sup>-3</sup> yr <sup>-1</sup> | 5 x 10 <sup>-9</sup> Mpc <sup>-3</sup> yr <sup>-1</sup>  |
| mixed binaries<br>(1.35 + 5 M₀)                                 | 3.1 x 10 <sup>-5</sup> Mpc <sup>-3</sup> yr <sup>-1</sup> | 3 x 10 <sup>-8</sup> Mpc <sup>-3</sup> yr <sup>-1</sup>  |
| "high stellar mass" BH binaries<br>(50 + 50 M₀)                 | 7 x 10 <sup>-8</sup> Mpc <sup>-3</sup> yr <sup>-1</sup>   | _                                                        |
| intermediate mass BH binaries<br>(center of 88 + 88 M₀)         | 1.2 x 10 <sup>-7</sup> Mpc <sup>-3</sup> yr <sup>-1</sup> | 3 x 10 <sup>-10</sup> Mpc <sup>-3</sup> yr <sup>-1</sup> |
| ringdowns<br>(BH merger, q=1:4, M⊤=125 M∘)                      | 1.1 x 10 <sup>-7</sup> Mpc <sup>-3</sup> yr <sup>-1</sup> | 3 x 10 <sup>-10</sup> Mpc <sup>-3</sup> yr <sup>-1</sup> |
| generic short-duration transient<br>(BH merger, supernova, etc) | 1.3 yr <sup>-1</sup>                                      | _                                                        |
| Phys. Rev. D 85 082002<br>Phys. Rev. D 87 022002                | Phys. Rev. D 89 122003<br>Phys. Rev. D 89 102006          | <u>Phys. Rev. D 85 122007</u>                            |



# **Compact Binary Upper Limits**

• Still a few orders of magnitude away from expected astrophysical rates





# **Cosmic Strings**

• Formed via phase transitions in the early universe giving rise to topological defects; string theory also provides creation mechanisms (superstrings)





# Search for Continuous GW from Binaries

 First of its kind undirected all-sky search for continuous (sine-wave) signals from neutron stars in binaries — also searched for signal from well constrained low mass X-ray binary source Scorpius X-1





## Multi-Messenger Astronomy: GRB / HEN





G1301309-v9



# The Path to Advanced GW Interferometry

- Improvements planned since 2010 runs:
  - Seismic isolation: passive → three and four stage passive isolation (benefits below ~50 Hz and lower accessible bandwidth down to 10 Hz) active hydraulic isolation stage
  - Signal recycling mirror → increased power circulating in the arms (reduce shot noise above ~200 Hz)
  - Increasing input laser power (~10 → 180 W) to reduce shot noise at high frequencies (Current is 35 W as demonstrated in S6 and now permanently on)
  - Thermal compensation of optical astigmatism at high laser power



#### Harry, et al. CQG 27 (201)) 084006



#### 2015 Era Upgrades





#### 2015 Era Upgrades





# Towards the Future

- Other planned improvements:
  - One more order of magnitude in laser power ( $35 \rightarrow 180 \text{ W}$ )
    - Push down the sensitivity curves towards the shallow 2018 design curve
  - "Tune" the signal recycling mirror: allow for better sensitivity at specific frequencies (e.g. a factor of a few for some periodic signals)
  - Light "squeezing": Overtake fundamental quantum noise limit at high frequencies

#### Harry, et al. CQG 27 (201)) 084006



# Advanced Virgo





- First major milestone completed on time: locked the input mode cleaner (first stages of input optics before the beam splitter)
- Intense installation work happening on site, installing suspension, additional vacuum chambers, preparing optical payloads, etc...:
  - Early 2015: all optics installed near beamsplitter, start of inner interferometer commissioning
  - Summer 2015: End mirrors installed, test one arm of the instrument
  - Fall 2015: Full interferometer locking and commissioning
  - 2016: First science data and joint run with LIGO interferometers



- The Livingston, Louisiana interferometer has achieved several stable locks, one of which was 2+ hrs: this is the *acceptance* goal for the advanced LIGO interferometers — major milestone!
- Hanford is very close to closing out installation and locking is expected to occur rapidly after this



Horizon Distance: Distance to optimally oriented SNR 8 1.35+1.35 binary coalescence



- The Livingston, Louisiana interferometer has achieved several stable locks, one of which was 2+ hrs: this is the *acceptance* goal for the advanced LIGO interferometers — major milestone!
- Hanford is very close to closing out installation and locking is expected to occur rapidly after this





- The Livingston, Louisiana interferometer has achieved several stable locks, one of which was 2+ hrs: this is the *acceptance* goal for the advanced LIGO interferometers — major milestone!
- Hanford is very close to closing out installation and locking is expected to occur rapidly after this





- The Livingston, Louisiana interferometer has achieved several stable locks, one of which was 2+ hrs: this is the *acceptance* goal for the advanced LIGO interferometers — major milestone!
- Hanford is very close to closing out installation and locking is expected to occur rapidly after this







# Engineering/Commissioning Runs

• End-to-end practice from data acquisition to candidate follow up and external communication including **low latency trigger analysis and dissemination** 





G1301309-v9



# Ground-Based Interferometer Networks (2015)



"Mollweide projection SW" by Strebe - Own work. Licensed under Creative Commons Attribution-Share Alike 3.0 via Wikimedia Commons - https://commons.wikimedia.org/wiki/ File:Mollweide projection SW.jpg#mediaviewer/File:Mollweide projection SW.jpg



#### The Next Three Years



|       | Estimated | $E_{\rm GW} =$ | $10^{-2} M_{\odot} c^2$ |          |          | Number     | % BNS             | Localized            |
|-------|-----------|----------------|-------------------------|----------|----------|------------|-------------------|----------------------|
|       | Run       | Burst Ra       | ange (Mpc)              | BNS Rang | ge (Mpc) | of BNS     | w                 | ithin                |
| Epoch | Duration  | LIGO           | Virgo                   | LIGO     | Virgo    | Detections | $5\mathrm{deg}^2$ | $20  \mathrm{deg}^2$ |
| 2015  | 3 months  | 40 - 60        | —                       | 40 - 80  | -        | 0.0004 - 3 | -                 | —                    |



# Ground-Based Interferometer Networks (2016)



"Mollweide projection SW" by Strebe - Own work. Licensed under Creative Commons Attribution-Share Alike 3.0 via Wikimedia Commons - <a href="https://commons.wikimedia.org/wiki/File:Mollweide\_projection\_SW.jpg#mediaviewer/File:Mollweide\_projection\_SW.jpg">https://commons.wikimedia.org/wiki/File:Mollweide\_projection\_SW</a>



#### The Next Three Years





#### 2nd Gen. Multi-messenger Astronomy

 "The First Two Years of Electromagnetic Follow-Up with Advanced LIGO and Virgo" (Singer, et al., 2014)







# Follow-Up Prototyping

- During the previous run, a pathfinder program was initiated between the LIGO and Virgo collaborations and electromagnetic observatories
- Challenge: weak SNR events generally have non-zero probability of origin location over hundreds square degrees along with likely disconnected regions on the sky

#### <u>Ap. J. S. 211 7</u>







<u>Ap. J. S. 2117</u>

- During the previous run, a pathfinder program was initiated between the LIGO and Virgo collaborations and electromagnetic observatories
- Challenge: weak SNR events generally have non-zero probability of origin location over hundreds square degrees along with likely disconnected regions on the sky
- Skymaps of source location probability were combined with a galaxy catalog and shared with partners who tiled the highest regions of probability



# 2nd Gen. Multi-messenger Astronomy

 Early follow up will require rapid and extensive parameter estimation (from GW astronomers; see talk from Vivien Raymond next!) and wide-field and/or high cadence observing facilities:



Figure 2. Rough timeline of compact binary merger electromagnetic emissions in relation to the timescale of the Advanced LIGO/Virgo analysis described in this paper. The time axis measures seconds after the merger.

- MoUs signed with ~40 partner telescopes/electromagnetic facilities
- Planned: GCNs, VOEvents, two-way information transfer with partners, system will be practiced and in place for the next observational run

#### http://www.ligo.org/science/first2years/



# Ground-Based Interferometer Networks (2018+)



"Mollweide projection SW" by Strebe - Own work. Licensed under Creative Commons Attribution-Share Alike 3.0 via Wikimedia Commons - <u>https://commons.wikimedia.org/wiki/</u> File:Mollweide projection SW.jpg#mediaviewer/File:Mollweide projection SW.jpg



#### The Next Five Years



#### LIGO-G1301302

#### Phys. Rev. D 88 043007



# **Concluding Remarks**

- LIGO-Virgo instrument progress is accelerating!
  - One instrument functioning beyond previous sensitivity limits
  - Next observing run planned for next year!
- Multi-messenger astronomy with gravitational waves will be a challenging but rewarding prospect: Gravitational-wave astronomy looks to partner observations with electromagnetic and particle observatories; joint observations to explore questions in current astrophysics as well as open new avenues
- Given current understanding/uncertainty of standard candle sources (like binary neutron stars) a detection(s) is  $\leq 3$  years away

#### Just In Case



#### 2018 Preview

| source                                                          | current upper limit                                       | 2nd gen rate                                                 | predicted rate                                                    |
|-----------------------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------------|
| neutron star binaries<br>(1.35 + 1.35 M₀)                       | 1.3 x 10 <sup>-4</sup> Mpc <sup>-3</sup> yr <sup>-1</sup> | 1.3 x 10 <sup>-7</sup> Mpc <sup>-3</sup> yr <sup>-1</sup> <  | 10⁻⁶ Mpc⁻³ yr⁻¹                                                   |
| stellar mass BH binaries<br>(5 + 5 M₀)                          | 6.4 x 10 <sup>-6</sup> Mpc <sup>-3</sup> yr <sup>-1</sup> | 6.4 x 10 <sup>-9</sup> Mpc <sup>-3</sup> yr <sup>-1</sup>    | = 5 x 10 <sup>-9</sup> Mpc <sup>-3</sup> yr <sup>-1</sup>         |
| mixed binaries<br>(1.35 + 5 M₀)                                 | 3.1 x 10 <sup>-5</sup> Mpc <sup>-3</sup> yr <sup>-1</sup> | 3.1 x 10 <sup>-8</sup> Mpc <sup>-3</sup> yr <sup>-1</sup>    | = 3 x 10 <sup>-8</sup> Mpc <sup>-3</sup> yr <sup>-1</sup>         |
| "high stellar mass" BH binaries<br>(50 + 50 M₀)                 | 7 x 10 <sup>-8</sup> Mpc <sup>-3</sup> yr <sup>-1</sup>   | 7 x 10 <sup>-11</sup> Mpc <sup>-3</sup> yr <sup>-1</sup>     |                                                                   |
| intermediate mass BH binaries<br>(center of 88 + 88 M₀)         | 1.2 x 10 <sup>-7</sup> Mpc <sup>-3</sup> yr <sup>-1</sup> | 1.2 x 10 <sup>-10</sup> Mpc <sup>-3</sup> yr <sup>-1</sup> < | <b>C</b> 3 x 10 <sup>-10</sup> Mpc <sup>-3</sup> yr <sup>-1</sup> |
| ringdowns<br>(BH merger, q=1:4, M⊤=125 M₀)                      | 1.1 x 10 <sup>-7</sup> Mpc <sup>-3</sup> yr <sup>-1</sup> | 1.1 x 10 <sup>-10</sup> Mpc <sup>-3</sup> yr <sup>-1</sup> < | < 3 x 10 <sup>-10</sup> Mpc <sup>-3</sup> yr <sup>-1</sup>        |
| generic short-duration transient<br>(BH merger, supernova, etc) | 1.3 yr <sup>-1</sup>                                      | 1.3 yr-1                                                     |                                                                   |

#### **Does Not Include Improvements to Detector Bandwidth**

