



### **Opening the Gravitational Wave Window**

Gabriela González Louisiana State University



For the LIGO Scientific Collaboration and the Virgo Collaboration

2014 CAP Congress - Sudbury, Ontario (Laurentian University) June 18, 2014











Explains just as well as Newtons' why things fall and planetary motion...



When masses move, they wrinkle the space time fabric, making other masses move...



.. but it also predicts gravitational waves traveling away from moving masses!

LIGO-G1400667

## **Gravitational Waves: they exist!**



Binary systems lose energy due to gravitational radiation (Hulse and Taylor, PSR 1913+16), showing up in their orbital parameters. Weisberg, Nice & Taylor, 2010 (Courtesy Joel Weisberg)





## **Gravitational waves**



A NS-NS coalescence in the Virgo cluster has  $h \sim 10^{-21}$  near Earth: changes the distance between the Sun and the Earth by ~ one atomic diameter, and changes 1km distance by ~10<sup>-18</sup> m

LIGO-G1400667

## The GW Detector Network 2005-2010





• 900+ members, 80+ institutions, 16 countries



#### www.ligo.org



Find all LSC results and publications in www.ligo.org - science tab





atlasofthe universe.com

Virgo

LIGO Livingston





#### Astrophys. J. 681 (2008) 1419



You can get (and listen to!) the detector data and other details: http://ligo.org/science/GW100916/

http://ligo.org/news/blind-injection.php

LIGO-G1400667

## **Some other LVC Results**





#### Nature 460 (2009) 990

Upper limit on GW energy emitted by generic sources at 10 kpc



#### Quantum-enhanced sensitivity! -



## Upper limits on GW emissions from Crab and Vela pulsars





(X-ray: NASA/CXC/Univ of Toronto/ M.Durant et al; Optical: DSS/Davide De Martin)

NASA/CXC/ASU/J Hester *et al.* (Chandra); NASA/HST/ASU/J Hester *et al.* (Hubble)

<u>Astrophys. J. **737** (2011) 93</u> <u>Astrophys. J. **722** (2010) 1504</u>





## www.ligo.org/science

|                  |                                                                                                                               | Home Español LIGO Lab Join LSC/internal                               |  |  |  |  |  |  |
|------------------|-------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|--|--|--|--|--|--|
| LS               | LIGO<br>Scientific<br>Collaboration                                                                                           |                                                                       |  |  |  |  |  |  |
|                  | news magazine Advanced LIGO science students/teachers/public                                                                  | multimedia partners about                                             |  |  |  |  |  |  |
| Introduction     | Popular Articles LSC Scientific Publications Science Summaries Data Rele                                                      | eases GW-EM Alerts                                                    |  |  |  |  |  |  |
| SUMMAR           | RIES OF LSC SCIENTIFIC PUBLICATIONS                                                                                           | LOOKING DOWN A DETECTOR                                               |  |  |  |  |  |  |
| We now feature   | e, for each new research article, a summary written for the general public with a downloadable                                | ARM                                                                   |  |  |  |  |  |  |
| and printable fl | yer in PDF format.                                                                                                            | and the second                                                        |  |  |  |  |  |  |
| 2014             |                                                                                                                               |                                                                       |  |  |  |  |  |  |
| Jun 4, 2014      | Searching for the Continuous Sounds of Unknown Neutron Stars in Binary Systems [flyer]                                        |                                                                       |  |  |  |  |  |  |
| May 15, 2014     | Leveraging the GEO600 Detector to Search for Gravitational Waves from Gamma-ray Bursts<br>[flyer]                             |                                                                       |  |  |  |  |  |  |
| Apr 15, 2014     | Searching for gravitational waves associated with gamma-ray bursts detected by the InterPlanetary Network [flyer]             |                                                                       |  |  |  |  |  |  |
| Apr 09, 2014     | Observing the Invisible Collisions of Intermediate Mass Black Holes [flyer]                                                   | No. And And                                                           |  |  |  |  |  |  |
| Mar 26, 2014     | Ringing of the Cosmic Bells: A Search for Black Hole Vibrations [flyer]                                                       | Cr dit: LIGO Laboratory                                               |  |  |  |  |  |  |
| Feb 24, 2014     | All-sky Search for Continuous Gravitational Waves in the Virgo Data [fiyer]                                                   | Visitors at LIGO Hanford Observatory gaze down the site's X arm. Half |  |  |  |  |  |  |
| Jan 16, 2014     | Can we Hear Black Holes Collide? Testing Our Search Methods using Numerically Generated<br>Gravitational-wave Signals [flyer] |                                                                       |  |  |  |  |  |  |
| 2013             |                                                                                                                               |                                                                       |  |  |  |  |  |  |
| Nov 14, 2013     | Do Cosmic Strings Exist? [flyer]                                                                                              |                                                                       |  |  |  |  |  |  |
| Nov 14, 2013     | Searching for Continuous Gravitational Wave Signals with the Hough Transform [flyer]                                          |                                                                       |  |  |  |  |  |  |
| Oct 16, 2013     | Scanning the Skies for Cosmic Explosions: First Search for Optical Counterparts to<br>Gravitational Waves [flyer]             |                                                                       |  |  |  |  |  |  |
| Oct 04, 2013     | A Search for Long-lived Gravitational Waves Associated with Long Gamma-ray Bursts [flyer]                                     |                                                                       |  |  |  |  |  |  |
| Sep 26, 2013     | How High Are Pulsar "Mountains"? [flyer]                                                                                      |                                                                       |  |  |  |  |  |  |
| Sep 26, 2013     | Listening for the Hum of Neutron Stars in the Center of Our Galaxy [flyer]                                                    |                                                                       |  |  |  |  |  |  |
|                  |                                                                                                                               |                                                                       |  |  |  |  |  |  |
| Aug 02, 2013     | The Quantum Enhanced LIGO Detector Sets New Sensitivity Record [flyer]                                                        |                                                                       |  |  |  |  |  |  |





~10 times better than initial LIGO Installation in progress, going very well, almost done !! Coincident "lock" in ~2014 (already achieved at LLO!), science runs starting in 2015 with increasing sensitivity to follow.



Vacuum system – same as initial LIGO









US NSF funding for Advanced LIGO: 2008-2015.

LIGO-G1400667

## **What's advanced in Advanced LIGO?**



#### Major technological differences between LIGO and Advanced LIGO



LIGO-G1400667





#### **Neutron Star Binaries:**

Initial LIGO: Average BNS reach ~15 Mpc → rate ~1/50yrs Advanced LIGO: ~ 200 Mpc *"Realistic rate" ~ 40/year* (but can be 0.4-400)

Other binary systems:

NS-BH: 0.004/yr → 10/yr BH-BH: 0.007/yr→ 20/yr

Class. Quant. Grav. 27, 173001 (2010)



## **Coming soon near you:** Advanced GW Detectors running!



| _ |           | 13                   |                                      | 10-916 9 |                 |         | NT 1       |
|---|-----------|----------------------|--------------------------------------|----------|-----------------|---------|------------|
|   |           | Estimated            | $E_{\rm GW} = 10^{-2} M_{\odot} c^2$ |          |                 |         | Number     |
|   |           | $\operatorname{Run}$ | Burst Range (Mpc)                    |          | BNS Range (Mpc) |         | of BNS     |
| _ | Epoch     | Duration             | LIGO                                 | Virgo    | LIGO            | Virgo   | Detections |
|   | 2015      | 3 months             | 40 - 60                              | _        | 40 - 80         | —       | 0.0004 - 3 |
|   | 2016 - 17 | 6 months             | 60 - 75                              | 20 - 40  | 80 - 120        | 20 - 60 | 0.006 - 20 |
|   | 2017 - 18 | 9 months             | 75 - 90                              | 40 - 50  | 120 - 170       | 60 - 85 | 0.04 - 100 |

#### arXiv:1304.0670



### The GW Detector Network~2020



## More detectors = better localization



Position uncertainties with areas of **tens to hundreds of sq. degrees** 

- → 90% confidence localization areas
- X → signal not confidently detected

## **Multi-messenger astronomy: GW/EM observations**



After detecting GW signals, we would like to ...

- Consider the signal in its astrophysical context
- Give a precise sky localization, identify host galaxy
- Get more insight into the physics of the progenitors (mass, spin, distance..) and their environment (temperature, density, redshift..)

We will obtain this picture combining gravitational-wave and electromagnetic information: Multi-messenger astronomy!

- LSC and Virgo opened a call to sign agreements for the identification of EM counterparts to GW triggers in Advanced detectors starting in 2015.
- We received more than 60 applications from 19 countries, with about 150 instruments covering the full spectrum, from radio to high-energy gamma-rays!
- Shortly after a few detections, LSC/Virgo will publicly release GW triggers for follow up.

#### More details in Kipp Cannon's talk on "The Exploding Sky" talk this afternoon









LIGU-G140000





![](_page_21_Picture_0.jpeg)

![](_page_21_Picture_1.jpeg)

## **Initial vs Advanced LIGO**

Lasers become more powerful: 10W → 200 W

![](_page_21_Picture_4.jpeg)

![](_page_21_Figure_5.jpeg)

![](_page_21_Picture_6.jpeg)

## Initial vs Advanced LIGO

![](_page_22_Picture_1.jpeg)

![](_page_22_Picture_2.jpeg)

LIGO-G1400667

![](_page_23_Picture_0.jpeg)

![](_page_23_Picture_1.jpeg)

## **Initial vs Advanced LIGO**

10 kg test masses on simple pendulums become 40 kg monolithic suspensions in quadruple pendulums, with better quality optics

![](_page_23_Figure_4.jpeg)

## More on LIGO: LIGO magazine in www.ligo.org

#### LIGO MAGAZINE

![](_page_24_Picture_2.jpeg)

## **Multi-messenger astronomy** 2010 (initial detectors)

![](_page_25_Picture_1.jpeg)

![](_page_25_Figure_2.jpeg)

# Call for interest in EM counterparts to GW candidates

![](_page_26_Picture_1.jpeg)

- After the first four published GW events, LSC and Virgo will promptly release public triggers to be followed up.
- To initiate the multi-messenger from the very beginning, LSC and Virgo opened a call to sign agreements for the identification of EM counterparts to GW triggers in Advanced detectors starting in 2015.
- We received more than 60 applications from 19 countries, with about 150 instruments covergin the full spectrum, from radio to high-energy gamma-rays!

![](_page_26_Figure_5.jpeg)

### The GW Detector Network~2016

![](_page_27_Figure_1.jpeg)