
LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY
- LIGO -

CALIFORNIA INSTITUTE OF TECHNOLOGY
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Document Type LIGO-T1400365-v5 2014/08/13

GraceDB: A Gravitational Wave Candidate
Event Database

Brian Moe, Patrick Brady, Branson Stephens, Erik Katsavounidis, Roy
Williams, Fan Zhang et al.

Distribution of this draft:

LIGO Scientific Collaboration

California Institute of Technology Massachusetts Institute of Technology
LIGO Project - MS 51-33 LIGO Project - MS NW22-295

Pasadena CA 91125 Cambridge, MA 01239
Phone (626) 395-2129 Phone (617) 253-4824

Fax (626) 304-9834 Fax (617) 253-7014
E-mail: info@ligo.caltech.edu E-mail: info@ligo.mit.edu

WWW: http://www.ligo.caltech.edu/

Processed with LATEX on 2014/08/13

LIGO-T1400365

Abstract

The gravitational wave candidate event database (GraceDB) is a webservice that organizes
candidate events from gravitational-wave searches and provides an environment to record in-
formation about follow-ups. This document describes the basic features of GraceDB, includ-
ing its data models, controller methods, and rendering templates. In the advanced detector
era, GraceDB is intended to act as a hub for communication between gravitational wave and
electromagnetic observers. This imposes several additional requirements on GraceDB which
will inform continued development of this service.

1 Introduction
The Gravitational Wave Candidate Event Database (GraceDB) is a webservice for collecting,
storing, and presenting information about astrophysical transients, especially candidate gravi-
tational wave (GW) events. This system is designed to aid in the GW data analysis effort and
to facilitate multi-messenger studies of specific transient events. GraceDB is currently under
development by the LIGO Scientific Collaboration on behalf of the LIGO/Virgo Community.

GraceDB is built on Django [1], a Python-based, model-view-controller (MVC) style web
framework. In addition to the webservice itself, two client tools are provided: a simple
command-line client and an example REST client (both written in Python). The latter can
be used out-of-the-box or extended by users for custom behavior. Both client tools expose all
of GraceDB’s functionality, including new event creation, complex searches, and event anno-
tation.

The structure of this document is as follows: The first section details the basic features of
GraceDB server code. The second outlines additional requirements expected in the advanced
detector era. The conclusions touch on some possible future directions for GraceDB develop-
ment. Finally, the usage of the GraceDB client tools is described in the appendices.

2 Basic features
The objects of interested in GraceDB—namely, the candidate events and their annotations—
are represented as structured information in a database. The webservice queries, modifies, and
constructs views of this information dynamically in response to requests made by users. In
this section, we first describe the underlying database models. Next, we describe the logic
functions (“controller methods”) that manipulate this information. Finally, we describe the
different available representations (“views”) of the data offered by the webservice, primarily
HTML and JSON.

2.1 Data models
There are two broad categories of data models in GraceDB: 1) the event model itself and 2)
the event annotations. The former represents the individual candidate GW event, whereas the
latter models represent information added to the event subsequent to its creation by a human or
robotic actor. The event itself is produced by a GW data analysis pipeline and is ordinarily sub-
mitted to GraceDB by a robot associated with that pipeline. After the initial event is created,
automated followup robots as well as human analysts may make further contributions by an-
notating the event. The full set of information about an event, including all of its annotations,
is sometimes called the event’s portfolio.

page 2 of 18

LIGO-T1400365

2.1.1 The Event model

The Event model has the following attributes:

• GraceID

• time of creation

• event submitter

• analysis group

• analysis type

• GPS time of the detection

• list of participating detectors

• false alarm rate (FAR) of the detection

• likelihood

The first five items above are administrative in nature, while the last four convey physical
information. Most critically, the GraceID serves as a unique identifier for the event. Next,
the time at which the event was submitted to the GraceDB server, as well as the authenticated
user responsible (whether human or robotic) are recorded. The remaining two attributes of the
basic event model requiring explanation are the analysis group and the analysis type.

The analysis group field indicates which working group within the LVC is responsible for
the pipeline that produced the candidate event. At present, the choices for the analysis group
are: CBC, Burst, Test, External, Stochastic, and Coherent. (Note that, at present, there are no
GraceDB event classes appropriate for stochastic or coherent GW detection candidates. These
group options exist in the database as placeholders.) The ‘Test’ group is for events which are
submitted to GraceDB in order to test either GraceDB itself or other followup infrastructure.
(Ordinarily, when the analysis pipelines are tested on simulated data, as in engineering runs,
the resulting events are not submitted to the Test group. This is because these are tests of the
pipelines themselves, rather than of GraceDB.) Finally, the ‘External’ group is for transient
events originating from instruments outside of the LVC (such as telescopes or neutrino detec-
tors). GraceDB already ingests GRB events from Swift and Fermi into the External group.
Such EM transients are stored in GraceDB in order to facilitate GW coincidence searches.

The analysis type field in the event model is intended to denote which particular analysis
pipeline (within a given working group) was used to make the detection. At present, the
following choices are available for this field:

• CBC pipelines: LowMass, HighMass, MBTAOnline

• Burst pipelines: CWB, Ringdown, Omega, Q, X

• External pipelines: GRB

• Other: HardwareInjection

Note that, to date, not all of the above pipelines have actually submitted events to GraceDB.
In fact, by convention, only pipelines which are able to produce an estimate of the FAR submit
events. (GRB events are an exception.) The last event type in the list above, HardwareInjec-
tion, is reserved for unblind hardware injections that are used to check for coincidences with
candidate events.

The event model described thus far applies to all GraceDB events, and hence all must have
at least these basic attributes. (For External events, however, the ‘FAR’ and ‘likelihood’ fields

page 3 of 18

LIGO-T1400365

GRB Inspiral Burst
ivorn ifos ifos
author_ivorn end_time start_time
author_shortname end_time_ns start_time_ns
observatory_location_id mass duration
coord_system mchirp peak_time
ra minimum_duration peak_time_ns
dec snr central_freq
error_radius false_alarm_rate bandwidth
how_description combined_far amplitude
how_reference_url snr

confidence
false_alarm_rate
ligo_axis_ra
ligo_axis_dec
ligo_angle
ligo_angle_sig

Table 1: Analysis-specific attributes for event subclasses.

are allowed to be null.) In most cases, however, more is known about the event at creation
time than is suggested by these basic attributes. Thus the analysis-specific attributes are in-
corporated by subclassing the simple event model described above. Three such subclasses
are presently defined: 1) GRB events, 2) compact binary inspiral events, and 3) burst events.
See Table 1 for details of these additional attributes. The names of these attributes are taken
directly from the event files uploaded at creation time.

2.1.2 Annotation models

There are three types of annotations that can be attached to any given event in GraceDB: labels,
log messages, and log message tags.

Labels: These are short strings that convey high-level information about an event. They
are drawn from a list of allowed labels that is stored in the database, and are applied to a
specific event by creating an association between the label and event objects. The database
model for a label object consists of just two fields: the label’s name and it’s default color (for
display purposes). At present, the allowed labels are: INJ, DQV, EM_READY, LUMIN_GO,
LUMIN_NO, SWIFT_GO, SWIFT_NO, cWB_r, and cWB_s. In practice, however, only the
first three labels are used. The INJ label indicates that the event corresponds to a known
injection, and hence should not be considered as a real candidate GW event. DQV indicates
a data quality veto, and hence also rules out an event. Finally, EM_READY indicates that the
event is suitable for electromagnetic followup. In all three cases, the label conveys high-level
information that could not have been known at the time of event creation. A typical workflow
is as follows: An event arrives in GraceDB, triggering a search of nearby times for injections.
If an injection is found within a sufficiently narrow time window of the event candidate, the
INJ label will be applied. Additional labels can be added to the database as needed by the
GraceDB developers.

page 4 of 18

LIGO-T1400365

Name Meaning
analyst_comments comments from human analysts entered by hand
audio uploaded audio files
background information about the analysis pipeline’s background
data_quality data quality information
ext_coinc comments regarding coincidence with external transients (such as GRBs)
psd data or plots of the noise power spectral density near the event time
sig_info information regarding the significance of the event
sky_loc sky localization information
strain data files or links to h(t) data
tfplots time frequency plots (such as spectrograms)

Table 2: The names and meanings of conventional tags.

Log messages: Each event in GraceDB has an associated set of log messages that contain
additional information about the event. Taken in sequence, these messages completely docu-
ment the event’s history and, thus serve as an audit log. Any time a file is uploaded, a label
added, or the event data are changed, a new log message is created to document the change.
Users can add their own log messages to an event (in plain text or HTML) and can attach files.
Thus, the event log allows unstructured information to be appended to an event. This is the
principal mode of annotation in GraceDB. The log message data model contains the following
attributes:

• the event to which the message refers

• time of creation

• log message submitter

• comment (the actual message text)

• filename (the name of an attachment)

• file version (the version to which this particular message corresponds)

• the number of the log message in the event’s sequence

Log message tags: Tags allow an event’s log messages to be categorized for purposes of
presentation or indexing. For example, applying the tag sky_loc to a log message indicates
that the message, along with its associated files, is related to sky localization. Tagging mes-
sages is useful for creating presentation templates (since related annotations can be grouped
together) and for pinpointing pieces of information stored in the log messages (since log mes-
sages can be searched according to their tags). Users may create their own custom tags for
special purposes, but the use of conventional tags is encouraged for common types of log
messages. These common conventional tags are shown in Table 2. Tag objects have three
attributes: a name (suitable for entry on the command line), a ‘display name’ (used for presen-
tation purposes), and a list of links to log messages.

2.1.3 URL patterns

The objects (events and annotations) stored in the GraceDB database are exposed to users
through URL patterns. Since this is most apparent with the REST interface, we start with
a discussion of the REST URL patterns. An illustrative (but not exhaustive) list is given

page 5 of 18

LIGO-T1400365

URL pattern Resource
/api/events/ event list
/api/events/<GraceID> specific event
/api/events/<GraceID>/log list of log entries for an event
/api/events/<GraceID>/log/<log #> specific log entry
/api/events/<GraceID>/files list of available files for an event
/api/events/<GraceID>/files/<filename> specific file
/api/events/<GraceID>/labels list of labels applied to an event
/api/events/<GraceID>/labels/<label name> specific label
/api/tag global list of tags
/api/events/<GraceID>/tag list of tags for given event
/api/events/<GraceID>/tag/<tag name> details of tag for this event
/api/events/<GraceID>/log/<log #>/tag list of tags on a given log message
/api/events/<GraceID>/log/<log #>/tag/<tag name> log entry tag detail

Table 3: REST API URL patterns for important objects. Names in angle brackets stand in for
specific values. The service URL (https://gracedb.ligo.org/) is suppressed.

URL pattern Resource
/events/<GraceID> event page (HTML)
/events/voevent/<GraceID> event (as VOEvent XML)
/events/<GraceID>/files/<filename> specific file (download target)

Table 4: Web interface URL patterns for important objects.

in Table 3. (These URLs should be prepended with the protocol and service URL, such
as https://gracedb.ligo.org/. Note that all URLs in the REST API begin with
/api/.) For any given data model, the list of objects is considered to be a separate resource
from the individual objects themselves. Thus, on the top level, we have the event list resource;
and below that, there are the individual events. Then, for a given event, there are lists of anno-
tation objects below that: log entries, files, labels, and tags. Beneath the list of log entries for
a given event, we then have the individual log entries themselves. In this way, all of the data
objects of interest are exposed for operations via HTTP verbs (GET, POST, etc.).

By contrast, the web interface has a simpler list of URL patterns (see Table 4). Only the
individual event and file resources are exposed. Notice that, with the exception of files, the
annotation resources (log messages, tags, and labels) are not directly exposed through the web
interface. This is because web users interact with an event’s annotation objects through widgets
on that event’s web page. The VOEvent URL pattern in Table 4 is an example of an alternative
event views. Rather than viewing the usual HTML web page representation of an event, the
user may opt to download the VOEvent in XML format.

2.2 Controller logic
In this section, we describe the different methods for interacting with the data stored in the
GraceDB database. These methods are called “controller methods,” since they handle all
logical processing. (Confusingly, the Django documentation refers to controller methods as
“views.”) When a user sends a request to a target URL, a particular controller method is exe-

page 6 of 18

LIGO-T1400365

cuted. Many of these methods actually come in two versions: one for the REST API version
and one for the web interface. The REST API was introduced later, and an attempt was made
to repeat as little code as possible, but there is still more re-factoring to be done. In particular,
the web-interface methods could be re-written (at least in part) as thin wrappers around the
REST methods.

As mentioned in section 2.1.3, the REST interface is organized by exposing lists of ob-
jects and the individual objects underneath them as separate resources. Sending an HTTP
GET request to the target URL for one of these resources simply returns a representation (the
‘RE’ in REST) of the resource requested. Creating a new object is done via POST to the
list resource, whereas modifying an existing object is done via PUT to the individual object
resource. The only other HTTP verb implemented in the GraceDB API is DELETE (which
is used for tags, but not for events or event log entries). The centrality of the objects them-
selves in organizing the API is in keeping with the Resource Oriented Architecture (ROA)
principle [2]. For example, instead of providing a URL specifically for event creation (as in
the cgi-bin model), one exposes a resource (the event list) that supports POST (which has the
effect of creating a new event). The controller functions in the REST API (which are really
callbacks for the HTTP verbs like GET, POST, etc.) are implemented using the Django REST
Framework [3]. This framework provides a remarkable Browseable API tool for navigating
the resources exposed by the API and for seeing which HTTP verbs are supported by each
resource (see https://gracedb.ligo.org/apiweb/). This feature makes the API
essentially self-documenting, and is extremely useful for coding directly against the API.

2.2.1 Event creation

Whether through the REST API or through the web interface, the process of creating an event
starts by capturing data POSTed to a target URL. This data is bound to an event creation form
with the following fields: group, type, and event file. Next, a bare-bones event is created in
the database with the appropriate group, type, submitter, and creation time. This bare-bones
event is necessary in order to obtain a GraceID (which will determine the path of the event’s
data directory on disk). Next, the event file is written to disk in the appropriate event directory.
This file is then read and parsed in order to obtain the remaining event attributes (both basic and
analysis-type specific). The complete event is then saved in the database. Finally, an attempt
is made to send out alerts via the LVAlert system and email. Users may configure notifications
via email using the GraceDB web interface by clicking ‘Options’ and creating a new contact
and notification. In practice, LVAlert is almost always used in favor of email notifications, so
they are not discussed further in this document.

2.2.2 Annotation

Once an event has been created, information can be added to it by creating annotations. Basic
descriptions of the workflow for creating the principal types of annotations are given below:

• Log message creation: As in the case of event creation, log entries are created by first
extracting information from the POST data. For the web interface, the POST is an AJAX
request initiated by a JavaScript text editing tool. For the REST interface, the annotation
contents are encoded as multi-part form data and POSTed to the log message list re-
source. At present, the web interface does not allow for file attachments (see request [4]).
The log message creation method extracts the message text, filename, file contents, and
tag name (see below) from the POST data and creates a corresponding database entry. If

page 7 of 18

LIGO-T1400365

a file is attached, the contents are written to a versioned file with the specified name and
an LVAlert message is sent to notify listeners of the uploaded file.

• Message tagging: A tag may be added to a log entry either when the log is created or
later as a separate step. If the log entry is created via the web interface, it is automatically
tagged as an ‘analyst comment’. But if it is created via the REST interface or command-
line client, the tag name (and display name, if desired) may be included in the POST
data. In order to tag an existing log message via the web interface, an ‘add’ button can
be clicked next to the message in the full message log. This brings up a dialog form that
allows the user to tag the message with one of the commonly used (‘blessed’) tags or to
create a new tag for the message. With the REST interface, an existing message is tagged
by making an PUT request to a target URL for the given log message and tag name (see
Table 3). If the tag is not already in the database, a new one will be created and the body
of the PUT request will be checked for the (optional) tag display name.

• Uploading files: As mentioned above, there is currently no facility for uploading files
via the web interface (though they are available for download). In the REST interface,
however, an event’s files are exposed in the usual way, with a list resource and individual
file resources. The file list supports a GET request (which returns the list of files), and
individual files support GET (download) and PUT (upload). (Note that this model differs
from event log messages, for example, where a new object is created by POSTing to the
list of objects. Here, a PUT to the individual file resource is used because, in this case, the
URL of the file resource can be constructed from the GraceID and filename, and hence
is already known to the submitter. By contrast, the submitter of a log message does
not know the final URL before submitting it because the server calculates the message
number.)

• Labelling: At present, adding a label to an event can only be done via the REST interface
or the command line client (i.e., there is no way to add a label through the web interface).
This is accomplished simply by making an empty PUT request to the label URL for a
given event and label name (see Table 3). The PUT callback creates a new association
(a “labelling”) between the event and label objects. This labelling is a database object
in its own right, and contains fields for the event, label, and creator (i.e., the user who
applied the label). An event log message is also generated so that the new label is fully
documented. Finally, an LVAlert message is sent.

2.3 View rendering
The controller methods described in the previous section receive HTTP requests, do any re-
quired processing (such as interactions with the database), and finally return HTTP responses.
The final step of constructing the response itself (given the products of any logical processing)
is handled by ‘views’ (the V in MVC), also known as ‘renderers.’ GraceDB uses Django tem-
plates for the purpose of rendering content as web pages. For the REST interface, the rendering
is handled by the Django REST Framework [3].

For any given data object, multiple templates may be used to render it depending on the
request. If there are multiple templates, the controller method handling the request will typi-
cally handle the logic to decide which template should be used. This is particularly useful for
event pages. For example, if a user issues a GET request for an for a cWB burst event page,
the controller method passes a burst-event-specific template to the renderer. Django templates
also support inheritance, so that the burst-specific template inherits most of its content from a
generic event template.

page 8 of 18

LIGO-T1400365

For the REST API, content is rendered as JSON by default. There are additional renderers
for the browseable API and LigoLw, but more could be added as needed. The Django rest
framework takes the output of such custom renderers and wraps it with the appropriate HTTP
headers to create the completed response. The content negotiation proceeds by checking the
HTML ‘Accept’ header of the request and then comparing with the available renderers. If
the ‘Accept’ header is not specified, then the default JSON is returned. But if it is specified,
an attempt will be made to find a renderer for that media type. The controller methods may
specify a priority order for the available renderers, and the highest priority renderer that can
return the requested media type is selected. If none is found, an error message is returned to
the effect that the Accept header cannot be satisfied.

2.4 Authentication and authorization
The first step of authentication is handled outside of the GraceDB server code by the Apache [5]
HTTP server. There are two modes of authentication:

• Shibboleth: When a user arrives at the GraceDB web site, the Shibboleth [6] ser-
vice provider (SP) daemon on the GraceDB host redirects the user to the LIGO Iden-
tity Provider (IdP) with an authentication request. The user authenticates using his/her
LIGO.org credential, and then is redirected back to GraceDB with a valid IdP session
cookie. Apache’s mod_shib processes the cookie and populates the REMOTE_USER
and isMemberOf environment variables. From GraceDB’s point of view, the existence
of a REMOTE_USER value indicates that a user has successfully authenticated, and the
isMemberOf value indicates his/her group memberships. Next, Django adds both of
these attributes to the request object, where they can be accessed by the auth middle-
ware and controller methods.

• Certificate-based auth: The REST API is protected with certificate-based authenti-
cation, which is handled by Apache’s mod_ssl. The user is required to present a
valid X509 certificate (or proxy) that traces back to a trusted CA. Then the environ-
ment variables SSL_CLIENT_S_DN (the client subject’s distinguished name, DN) and
SSL_CLIENT_I_DN (certificate issuer DN) are populated, and Django adds these at-
tributes to the request object.

The GraceDB webservice maintains its own database of users. When a request comes
in, the auth middleware searches this database by username (the eduPersonPrincipalName,
obtained from REMOTE_USER) if the user requested a Shibboleth-protected URL, or by X509
subject DN if the user requested a REST API URL. If the search turns up a user, Django sets
the ‘user’ attribute of the request object, and processing of the request continues.

But suppose no corresponding user is found. If the original request came with a valid
LIGO IdP session cookie, we can be sure that this is a legitimate user. Thus, a new user object
is created in the GraceDB local user database, and the processing of the request continues.
However, if the user authenticated with an X509 certificate and is not found in the database, a
‘Forbidden’ response is returned. This is because we cannot be sure that this X509 certificate
corresponds with any valid LIGO.org user.

Because the X509 subject DNs must be found in GraceDB’s user database, the database is
periodically updated using the LIGO central LDAP. This method works for all human users.
The DNs of robotic users are entered into the database manually, along with an appropriate
user name and contact information. This way, robots may authenticate to the REST API and
perform operations, and their actions are logged in a recognizable way.

page 9 of 18

LIGO-T1400365

analysis
pipelines

GraceDB

event fileGraceID

user

gdb_processor
GCN/TAN

telescope

Comet/Twistd

GCN Sending Script

lvalert_listen

followup script

email

RSS

vi
ew

s

annotations

annotations

LVAlert

VOEvent

an
no

ta
tio

ns

Figure 1: Some example workflows, starting from the GW analysis pipelines and ending with
annotations provided by EM observers.

2.5 Summary
The foregoing sections present a sketch of the current state of GraceDB. We have described
the resources exposed by GraceDB and the operations that can be performed on them. One of
the key architectural choices made by the GraceDB developers was that GraceDB should not
generate content, but rather should archive content from external sources (namely, from LVC
data analyses and follow-up processes) and should present this content in a useful way. Thus,
GraceDB is not itself responsible for doing any follow-up analyses of candidate GW events. In-
stead, such analyses are often performed by an automated user (the gdb_processor robot)
in response to events and annotations arriving in GraceDB. Figure 1 illustrates this interaction,
along with some other possible workflows involving GraceDB.

3 Additional requirements
Some additional requirements for the advanced detector era are outlined in this section and en-
tail several challenging development tasks. Most of these requirements are aimed at facilitating
multi-messenger astronomy.

page 10 of 18

LIGO-T1400365

3.1 The electromagnetic followup bulletin board
The electromagnetic followup bulletin board (EMBB) is a proposed space within each GraceDB
event page for gathering and displaying information related to EM followup. We anticipate that
at least three general categories of annotations may arise from the EM followup effort:

• observation records documenting individual observations (i.e., patches of sky that have
been imaged, with accompanying details)

• candidate source records documenting sources discovered in the course of EM fol-
lowup observations (i.e., potential EM counterparts)

• unstructured comments containing any additional information MOU partners may wish
to share (free text)

These different types of annotations will vary in the amount of structured information
(i.e., information that is representable in the database) that they contain: from none (free text
comments) to almost all (observation records). So a flexible data model will be required.
Furthermore, it is not known at present how the electromagnetic astronomy MOU partners
will prefer to report on followup observations and candidate EM counterparts. These facts
recommend a relatively light-weight data model for EMBB annotations.

The current plan is to create a new data model within GraceDB for an EMBB log message:
EMBBEventLog. This will be a general purpose model for all EM followup related data. Thus,
the model should be rich enough to adequately represent the three categories of annotations
mentioned above, but simple enough to keep the workflow manageable. Some requirements
on this model are outlined below.

Requirement 3.1.1. The EMBB should provide a mechanism for astronomers to record
observations in a structured, searchable manner. This information should be accessi-
ble through the web interface as well as through the REST API in a machine-readable
format.

The EMBBEventLog messages that document particular observations should contain sev-
eral pieces of structured information, including: the footprint of the observation on the sky, the
waveband, and the provenance. For the footprint, our proposal is the ‘smallest covering rect-
angle’, defined by a center and the width in the RA and Dec directions: for an observational
footprint, this is the smallest rectangle containing the imaged area; and for a candidate source,
the width measures would be the position error. Thus the physical location of the rectangle can
be defined by the four dimensions of sky position, time, and EM waveband:

• RA and Dec of the center of the equatorially-oriented rectangle in decimal degrees, with
the widths in RA and Dec of the rectangle, also in decimal degrees.

• The GPS time of the imaging time, with the duration of the imaging in seconds.

• The waveband of the imaging, expressed in general terms by a vocabulary of wavebands.

A suggestion for the waveband vocabulary is to use the ‘Unified Content Descriptor’
language [7], an international standard from the virtual observatory. Some examples are:
em.opt.R (Optical band between 600 and 750 nm) and em.X-ray.hard (Hard X-ray,
12-120 keV).

We will want each EMBBEventLog to be adequately identified and provenanced both to
the GraceDB system and to the EM followup observers:

• The facility that took the data, chosen from a list derived from the MOU list.

page 11 of 18

LIGO-T1400365

• The name of the responsible scientist who is submitting the EMBBEventLog.

• The facility’s unique identifier for the observation, chosen as they wish.

Then by combining the identifier for the facility with their own identifier, we have a unique
identifier over all submissions from all facilities.

In addition to the structured data outlined above, we also want to allow unstructured infor-
mation to be added to the bulletin board:

Requirement 3.1.2. The EMBB should provide a mechanism for astronomers to anno-
tate events with unstructured information (e.g., freely composed text and images). These
annotations should be displayed in the EMBB web area.

As an intermediate between the structured data fields and the text field provided for freely
composed comments, we should also support arbitrary machine-readable metadata in the EM-
BBEventLog. This would likely take the form of a serialzed dictionary of key-value pairs,
chosen by the observers themselves. Rather than the endless task of making a list of all possi-
ble keywords (for example {“limiting-magnitude” : 22.3}), there can be a single
place for this formal text.

Requirement 3.1.3. The EMBB should provide a mechanism for astronomers to anno-
tate events with arbitrary formal information (e.g., JSON, XML, etc.). These annotations
may be understood by clients of the EMBB, even if the parameters are not yet known to
GraceDB.

As noted, it may be that data is put into this formal text that GraceDB does not under-
stand; that astronomers may be creative with keywords in representing the data. However,
the important matter at the start is for this formal text field to be sufficiently flexible, so that
standardization and schema-making can come later with experience.

There is also a need for flags to properly identify the meaning of the EMBBEventLogs: it
may be a footprint or a candidate source, it may be a completed observation with completed
data analysis, or one that will happen in the future, or it may be just an output from a planning
program (a possible observation).

It is likely that information related to followup observations and potential EM counterparts
will appear in content sources external to GraceDB. Thus,

Requirement 3.1.4. The EMBB should incorporate and/or link to information about an
event from other content sources (such as GCN/TAN Circulars, or even richer commu-
nications like GCN reports, if the EM astronomers choose to use them.).

If this information is a mixture of formal (i.e., machine-readable) and informal (free text),
then the formal part should be ingested into the formal part of the EMBBEventLog, and re-
spectively for the free text.

The EMBB should be able to take inputs in various ways: from filling in a web form or
from sending an email, and of course it can be either humans or machines taking these actions.
One way to allow structured input via email is to extend the syntax of the GCN Circular, so
that those astronomers who are used to emailing Circulars can do so for their MOU-required
observation reporting.

The EMBB should be able to support client applications that can show the information in
various ways, or fuse it with other content. Queries for EMBB data would generate formal
responses (JSON or XML) in the standard ways: fetch a list of items, fetch an item in detail,
edit an item, and so on.

page 12 of 18

LIGO-T1400365

3.2 Presentation and searching of skymaps
GraceDB events may be searched by any of the fields in the event data model (including
analysis-specific attributes), but there is not yet any way of searching by sky location. In-
cluding such a “cone search” facility in GraceDB could aid in coincidence searches (both
automatic and human-initiated).

Requirement 3.2.1. GraceDB events must be searchable by sky location.

The details of the sky-location queries that should be supported are still under discussion.
The queries could resemble, for example, “Return all events whose 50% confidence region
intersects a circle centered on (α, δ) of radius r arcminutes.” In addition to this search facility,
it would also be useful to see events (and sets of events) displayed on a sky map:

Requirement 3.2.2. Individual GraceDB events, as well as groups of events (such as
catalogs and query results), should be viewable on a map of the sky.

This way, search results could be displayed graphically with overlays such as galaxy cata-
logs, if desired. For example, an astronomer could search for all LowMass events in a specific
time window with FAR < 10−6 Hz. One way of satisfying this requirement would be by link-
ing to the skymapViewer web service [8]. The details of this linkage are still being worked
out.

Lastly, we note that the EMBB data models and API should be developed such that an
Observing Calculator can be built against it. This would be a client tool such that, given a
particular event and observing facility, the event’s skymap would be used to produce a list of
pointings. As with other derived analysis products, the logic for producing this list should be
external to GraceDB. The final product (i.e., a list of pointings or observing plan) could be
archived by GraceDB, however. The exact specifications and details in the implementation of
an Observing Calculator will be defined following input and discussion with the astronomical
community participating in the LIGO-Virgo EM followup program.

3.3 Federated authentication and authorization
For the purposes of coordinating with the LIGO Open Science Center (LOSC) and EM observ-
ing partners, GraceDB must accept authenticated users who do not have LIGO.org credentials.
Thus,

Requirement 3.3.1. GraceDB must support federated identities for authentication.

At the very least, it will be necessary to federate with the LIGO Guest IdP, as guest iden-
tities could be issued to external users. It would be even better, however, to federate with a
larger group of institutions (such as InCommon [9] members) in order to avoid issuing large
numbers of guest identities.

In addition, it will be necessary to restrict access to certain data within GraceDB to par-
ticular groups of users. For example, a member of the interested public should not see events
that have not yet been reviewed and approved for release by the relevant authorities. The
most straightforward way of accomplishing this would be to define groups of users and to set
permissions based on group membership.

Requirement 3.3.2. GraceDB must be able to protect individual events with group-
based authorizations. Permissions to create, view, and annotate events should be sepa-
rately specifiable.

It will likely also be necessary to protect individual annotations in the same way. Naturally,
in order to perform the necessary authorization checks, GraceDB will need group information

page 13 of 18

LIGO-T1400365

for all non-anonymous users. The Shibboleth project provides a convenient way of getting
information about a user’s groups into the GraceDB auth middleware. It would thus be desir-
able if the necessary group information were conveyed in the Shibboleth assertion provided
by the user’s IdP (or by an Attribute Authority set up specifically for this purpose). Handling
all authentication/authorization with Shibboleth would greatly streamline the GraceDB auth
infrastructure. It would, for example, obviate the need to cache information about user certifi-
cates from the LIGO LDAP.

Some aspects of this proposed auth infrastructure impose requirements external to GraceDB
development. For example, a registration workflow will be needed for those without LIGO.org
identities. Registration should result in their group membership information being provisioned
into an attribute provider or LDAP. Group membership information will also be needed for
robotic users.

3.4 Event approval workflow support
A candidate GW event must pass several checks before it is sent to astronomy MOU part-
ners via GCN/TAN. Min-A Cho and Peter Shawhan have developed a preliminary version of
the workflow for approval (see [10]), which will engage automatic followup checks and also
(potentially) human-in-the-loop checks. The GraceDB event and annotation models will need
to be modified slightly in order to support this approval workflow. The logical processing of
the workflow itself, however, will be delegated to an automated followup coordinator (such as
gdb_processor).

On the GraceDB server side, the event model will likely be extended to include fields
for the event’s iDQ (data quality) check status (passed, unknown, failed) and a sci-mon sign-
off for each detector (sci-mon user name, status: pass/fail, and optional comment). Changes
in an event’s iDQ status or sci-mon status should also generate LVAlerts in order to notify
gdb_processor that the next steps in approval process may be taken. Lastly, the new
labels SKYMAP_READY and PE_READY (in addition to the existing EM_READY label)
would need to be introduced to the database.

Additional event model fields and/or labels could be added in the future to indicate, for
example, an event’s review and release status. Development of such features will likely proceed
on an as-needed basis in response to scoped tests of the infrastructure.

3.5 Audience-specific rendering templates
GraceDB (in association with LOSC) should eventually provide information about candidate
GW events to scientists outside of the LVC and to interested members of the general public.
Thus, there are (at least) three audiences for GraceDB:

• LVC members

• EM astronomers in partnership with the LVC

• Members of the general public

Requirement 3.5.1. The presentation of information in GraceDB should be tailored to
the appropriate audience. Thus, multiple audience-specific rendering templates will be
required.

For example, an EM astronomer looking at an event as a potential candidate for follow-
up observations may not be interested in details such as which analysis pipeline detected the

page 14 of 18

LIGO-T1400365

event. In contrast, she/he would likely be very interested measures of the event’s significance.
For each audience, the presentation should foreground the most important information.

The controller methods in GraceDB would choose a specific rendering template based on
a user’s group memberships (see Section 3.3). If a finer-grained customization is eventually
desired, infrastructure could be introduced for users to create individual profiles to control
presentation.

3.6 Service redundancy
It is very important that the GraceDB server be robust, since the scientific activities of the
LVC and EM followup community could be negatively impacted by service degradations. At
present, no special measures have been taken to build redundancy into the GraceDB deploy-
ment (beyond nightly, off-site backups). One one occasion during ER5, a sudden increase
in the number of requests to GraceDB slowed the server to the point of unresponsiveness.
Though this situation is not representative of normal operating conditions, it would be best to
be prepared for such events in the future.

Requirement 3.6.1. In the event that the GraceDB server becomes unresponsive, an-
other instance should automatically take its place (“hot failover”).

To this end, we have acquired a load balancing appliance at UWM in order to achieve
redundancy with hot failover. The details of the configuration are still under discussion, but
one possible setup would be to have three GraceDB instances: one that supports reading and
writing, a second that is read-only, and a third read/write instance for use as a hot spare. This
imposes a few additional requirements:

Requirement 3.6.2. The load balancing appliance should support node selection by
HTTP verb so that reading and writing operations are directed to the correct node.

This requirement also implies that the load balancer will have to do SSL off-loading, since
the request will need to be decrypted in order to determine whether reading or writing is in-
tended. Also,

Requirement 3.6.3. The GraceDB database must be replicated across nodes, and a
common filesystem for event files must be available to all nodes.

Lastly, since users are likely to make both read and write requests in the same session, and
these requests will be directed to different nodes,

Requirement 3.6.4. User sessions should be replicated across all nodes.

4 Future directions
In the process of working toward the requirements for the advanced detector era (Section 3),
many other avenues of development will undoubtedly be discovered. For example, perfor-
mance tuning is likely to assume a larger share of the development effort, particularly after
all of the basic infrastructure components have been added. In fact, an in-depth performance
analysis of GraceDB has yet to be performed. Leveraging JavaScript datastores for the event
presentation may be one way of improving performance, since more of the data manipulation
tasks can be moved to the client side. In addition, the design of the presentation and the han-
dling of various media types (from audio to skymaps) will also be important considerations
going forward.

page 15 of 18

LIGO-T1400365

A REST client usage
The Python module ligo.gracedb.rest, which is distributed with LALSuite, may be
used “as is” to submit and modify events, or may be taken as a starting point for develop-
ing a custom interface. For example, the lines below demonstrate how to create a new CBC
LowMass event and then replace it later:

import os, json
from ligo.gracedb.rest import GraceDb

Build path to event file
eventFile = os.path.join(os.getcwd(),"coinc.xml")

Instantiate the client.
gracedb = GraceDb()

Create the event.
r = gracedb.createEvent("CBC","LowMass", eventFile).json()
graceid = r["graceid"]

... suppose some process modifies coinc.xml ...

Replace the event with the new coinc file.
r = gracedb.replaceEvent(graceid, "coinc.xml")

Note that, before this client can be utilized, a valid proxy certificate must be generated using
ligo-proxy-init. (For robotic users, simply set the environment variables X509_USER_CERT
and X509_USER_KEY to point to the appropriate files.)

The GraceDb client class also includes the following additional methods:

• events() for accessing a list of events,

• files() for downloading a file or list of files, and writeFile() for uploading,

• logs() for obtaining a list of log entries, and writeLog() to create a new one,

• labels(), writeLabel(), and removeLabel() for managing labels,

• tags(), createTag(), and deleteTag() for managing tags.

The methods listed above expose most of GraceDB’s functionality. Below is an example in
which an event’s VOEvent representation is obtained form GraceDB, written to a file, and then
submitted to GCN via Comet [11]. (Code similar to this snippet was used to test GCN/TAN
connection during ER5.)

import subprocess
from ligo.gracedb.rest import GraceDb

Somehow decide which event to get
graceid = ’GXXXXXX’

Instantiate the client.
gracedb = GraceDb()

page 16 of 18

LIGO-T1400365

Pull down the VOEvent and write to tmp file.
url_template = gracedb.templates[’event-vo-detail-template’]
r = gracedb.get(url_template.format(graceid=graceid))
voevent = r.json()
tmpfile = open(’/tmp/voevent.tmp’,"w")
tmpfile.write(voevent)
tmpfile.close()

Send it out with comet!
cmd = "comet-sendvo -p XXXX -f /tmp/voevent.tmp"
proc = subprocess.Popen(cmd, shell=True, stdout=subprocess.PIPE,

stderr=subprocess.PIPE)
output, error = proc.communicate(voevent)

Finally, here is an example that retrieves events according to a complex query, creates a
plot for each event, and uploads each plot with an accompanying log message:

from ligo.gracedb.rest import GraceDb, HTTPError

Define the query for the ER4 catalog. The ER4 token in the
search string limits the gpstimes to the ER4 epoch.
query = ’ER4 -INJ & EM_READY FAR<1e-12’

Instantiate the client.
gracedb = GraceDb(SERVICE)

Get the catalog events.
events = gracedb.events(query)

Process events:
for event in events:

graceid = event[’graceid’]
gpstime = int(event[’gpstime’])

... invoke code to create a nifty plot

tagname = ’sky_loc’
message = ’My interesting sky localization plot.’
filename = ’myskyplot_%s.png’ % graceid

try:
r = gracedb.writeLog(graceid,message,

filename=filename,tagname=tagname)
except HTTPError:

print "Error! Status code = %d", r.status

We emphasize that the REST API is not bound to be used with Python. Users may code
against the API in any language that supports the necessary HTTP and X509 functionality. For
example, curl can be used to create a new event as follows:

curl -X POST -F "group=CBC" -F "type=LM" -F "eventFile=@coinc.xml" \

page 17 of 18

LIGO-T1400365

--cert /tmp/x509up_u${UID} --key /tmp/x509up_u${UID} --insecure \
https://gracedb.ligo.org/api/events/

B Command-line client usage
A GraceDB command-line client is also provided with LALSuite. This client simply wraps
the functionality of the REST client described in the previous section. A detailed description
of the usage of the command-line client may be obtained by typing:

gracedb --help

For example, to create a new CBC LowMass event using the file “coinc.xml,” simply enter:

gracedb CBC LowMass coinc.xml

The command-line client can also be used to ping the server, search for events, upload and
download files, create log entries, add labels, tag existing log entries, delete tags, and replace
events. These functions are described in detail in the help message. By default, search results
are presented in a table of tab-separated values, but LigoLw is also available for events which
have “coinc.xml” files. One tricky aspect of the command-line client is that certain characters
(such as quotation marks) need to be escaped. For example, to search for events submitted
during ER5 by the GSTLAL SPIIR analysis robot:

gracedb search ER5 submitter: \"gstlal-spiir\"

References
[1] http://djangoproject.com

[2] L. Richardson and S. Ruby, RESTful Web Services (O’Reilly, Sebastopol, CA, 2007).

[3] http://www.django-rest-framework.org

[4] https://bugs.ligo.org/redmine/issues/1367

[5] http://httpd.apache.org

[6] https://shibboleth.net

[7] http://www.ivoa.net/documents/latest/UCDlist.html

[8] https://www.ligo.caltech.edu/ rwilliam/skymapViewer

[9] http://www.incommon.org

[10] M. Cho, https://dcc.ligo.org/LIGO-T1400414 (2014).

[11] https://github.com/jdswinbank/Comet

page 18 of 18

	Introduction
	Basic features
	Data models
	The Event model
	Annotation models
	URL patterns

	Controller logic
	Event creation
	Annotation

	View rendering
	Authentication and authorization
	Summary

	Additional requirements
	The electromagnetic followup bulletin board
	Presentation and searching of skymaps
	Federated authentication and authorization
	Event approval workflow support
	Audience-specific rendering templates
	Service redundancy

	Future directions
	REST client usage
	Command-line client usage

