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Abstract

Lasers need to have low frequency and phase noise when used in high-precision measurements
(such as gravitational wave detection). Advanced LIGO’s laser cavities contain coatings that
are subject to Brownian noise, which is the dominant noise source in the 40 - 100 Hz regime.
Here we test the feasibility of a coating-less optical cavity in reducing the total noise. To
achieve such cancellation, we focus on reducing thermal noise, namely thermoelastic (TE)
noise (associated with length fluctuations) and thermorefractive (TR) noise (associated with
index of refraction fluctuations).

Since TE and TR arise from the same source—thermal fluctuations—we expect correlation
between them, allowing for possible cancellation. However, only partial correlation—and
hence partial cancellation—was found. The thermal noise reduction was not enough com-
pared to the noise in cavities with reflective coatings. Our optical cavity is a rectangular
block, utilizing total internal reflection instead of reflective coatings. A fast method is pre-
sented here for thermal noise calculations, which rely on Finite Element Analysis (FEA)
software. For thoroughness, the next step is to determine if different geometries allow better
cancellation. However, this is not expected, since the laser beam is believed to be too small
to notice differences in geometry.

1 Motivation

Laser frequency stabilization is important for use in high-precision measurements (such as
gravitational wave detection). The cavity from which the laser originates contains many
sources of noise, such as thermal and mechanical fluctuations [1]. To achieve the precision
necessary for gravitational wave detection, this project aims to reduce noise in these cavi-
ties. Most stabilization cavities contain reflective coatings, which have the problem of high
Brownian noise, as shown in figure 1 from Kessler et al [2]. As a result, this project removes
the reflective coatings in the resonator and instead uses total internal reflection (TIR).

2 TIR Cavity

A TIR cavity removes all of the multilayer coatings that are usually present. In doing so,
losses upon reflection are reduced; as mentioned previously, Brownian noise is prevalent
in multilayer coatings. The cavity operates by using total internal reflection (TIR), which
requires that n2 < n1 [3], where n1 is the index of refraction of the cavity, and n2 is the index
of refraction of the surrounding medium. Furthermore, the angle of incidence θ inside of the
medium n1 must satisfy sin θ > n2/n1 for TIR to occur. This means that the values by which
n1 and n2 differ depends on the geometry of the cavity. For example, if we describe total
internal reflection inside of a square, θ = 45◦, so n1/n2 > 1.41. For a triangle, meanwhile,
n1/n2 > 2.

How does the light first get into and out of the cavity? It “leaks” into the cavity by use of
frustrated total internal reflection. As discussed in Schiller et al, another material is placed
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Figure 1: From Kessler et al, the coating Brownian noise is shown in red for various substrate
materials in an optical cavity.

Figure 2: The coating-less total internal reflection (TIR) cavity. A prism and cavity are
separated a distance on the order of the wavelength of the laser light. When the light enters
the prism, an evanescent part of the light enters the cavity (a process called frustrated total
internal reflection).

a distance of order λ (light wavelength) from the cavity. This allows an evanescent wave to
travel into and out of the cavity.

3 Thermal Noise

High-precision optical cavities deal with many sources of noise, which is why it is important
to have a strong signal. For this report, we focus on the thermal noise: Thermoelastic (TE)
noise, and Thermorefractive (TR) noise. The current section discusses how to calculate these
forms of thermal noise.
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3.1 Fluctuation Dissipation Theorem

The Fluctuation Dissipation theorem (FDT) will be the primary tool used to calculate the
thermal noise. The central idea of the FDT is that fluctuations cause dissipation. Hence,
if we have low fluctuations, there will also be low dissipation. Notice that this is relating a
microscopic property to a macroscopic property. The dissipation (a macroscopic property)
is usually the observed property, which means that it can be used to infer the thermal
fluctuations. See Callen & Welton [4] for a detailed derivation of the FDT.

Fluctuations are quantified by the power spectral density Sξ(ω), which gives the rms value
of the random variable ξ, per unit frequency. Assuming that the mean value of ξ is 0, Sξ(ω)
is a variance density.

3.2 Levin’s Approach

Levin’s approach utilizes the FDT to calculate thermal noise. The technique works for non-
uniform dissipation and an arbitrary laser beam size. To calculate the thermal noise Sz(f)
associated with a displacement z at a frequency f , one applies, at time t, an oscillatory
generalized force F0 cos(2πft)f(~r) to the geometry of interest (the “test mass”) [5]. f(~r)
indicates the spatial distribution of the applied force beam on the geometry and F0 is an
arbitrary amplitude. In this process, one can calculate Wdiss, the dissipation associated with
the applied force. From the FDT, Sz(f) can then be calculated via

Sz(ω) =
8kBT

ω2

Wdiss

F 2
0

(1)

where T is the temperature of the test mass, kB is Boltzmann’s constant, and ω = 2πf .
Note that the F0 term is not necessary to calculate because it cancels out with the F0 in the
expression for Wdiss.

3.3 Brownian Noise

We have previously mentioned Brownian noise when discussing reflective coatings. This is
an effect that arises out of Brownian motion, where particles in a fluid are observed to jostle
randomly while suspended in a fluid. Brownian noise manifests itself as slight, fluctuating
distortions in the shape of the cavity. Brownian noise can occur in an optical cavity’s
reflectors, and is especially prevalent in multilayer mirror coatings (see Kessler et al. [2] for
Brownian noise in different materials). The purpose of this report is to remove these coatings
in an attempt to reduce Brownian noise.

3.4 Thermorefractive Noise

Thermorefractive (TR) noise is caused by fluctuations in the index of refraction of the cavity
due to stochastic fluctuations in the material’s temperature. The result of these fluctuations
is that radiation in the cavity develops random fluctuations in its phase. The thermore-
fractive index β ≡ ∂n

∂T
characterizes this TR noise (where n is the index of refraction). For
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Thermorefractive noise, the generalized force of the Levin Approach has the form of an
oscillatory heat source [7]:

q(~r, t) = T (~r, t)F0 cos(2πft)f(~r) (2)

where T (~r, t) describes the temperature distribution at a point ~r and time t. f(~r) describes
the shape of the laser beam as it propagates through the cavity. Given the heat source in
equation 2, one can solve for the temperature distribution via the heat equation:

Cp
∂T

∂t
− κ∇2T = q̇(~r, t), (3)

where Cp is the heat capacity per volume at constant pressure and κ is the thermal con-
ductivity. Now, temperature gradients are the true quantities of interest because they cause
heat flux—and therefore energy dissipation—in the test mass. The dissipation is related to
the temperature gradient via

Wdiss =
1

2T0

∫
V

κ|∇T |2 dV (4)

where κ is the thermal conductivity and T0 is a homogeneous reference temperature of the
test mass. From this, one can use the FDT (eq. 1) to calculate the thermal noise.

Solving the time-dependent heat equation can be computationally expensive, since one must
deal with complicated transients and average over them when calculating Wdiss. To avoid
such time-consuming procedures, we assume a steady-state temperature T (~r, t) = T (~r)eiωt,
given a heat injection q(~r, t) = q(~r)eiωt. This yields a frequency-domain differential equation
of the form

iωCpT (~r)− κ∇2T (~r) = iωq(~r) (5)

With this time-saving method, one can use eq. 4 without dealing with transient temperature
distributions.

3.5 Thermoelastic Noise

Another source of thermo-optic noise is thermoelastic (TE) noise, thermal length expansions
due to stochastic temperature fluctuations. These thermal fluctuations cause the cavity to
create small, fluctuating deformations throughout its surface. These geometry changes then
cause laser frequency noise. TE noise is characterized by the thermal expansion coefficient
α ≡ 1

L
( ∂L
∂T

), where L is the linear dimension of the cavity.

Following the Levin approach, one applies a surface stress (units of pressure) F0f(~r)eiωt

incident normal to the cavity. With these boundary conditions, one calculates the elastic
displacement field ~u of the cavity by solving

(1− 2σ)∇2~u+∇(∇ · ~u) = 0, (6)

where σ is the Poisson’s ratio of the material in question (see [6] for more about elasticity).
The elastic displacement will cause temperature changes in the material, proportional to the
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material’s coefficient of linear thermal expansion α. These temperature changes cause a heat
to flow in the material:

q(~r) = − αET0
1− 2σ

∇ · ~u (7)

With the heat injection from the elastic displacement, one then solves the heat equation
in eq. 5, assuming steady-state, harmonic temperature and displacement field oscillations.
From here, one applies eq. 4 and 1 to calculate the TE noise.

3.6 Thermo-optic Noise

TE and TR noise can be combined together, which is the aim of this project. Evans et.
al [?] showed that in a cavity with multilayer coatings, the TE and TR mechanisms have a
negative relative sign in the overall thermal noise (“thermo-optic” noise) spectrum, leading to
possible thermal noise cancellation. However, this relative negative sign does not occur with
coating-less cavities. As a result, we seek materials whose parameters α and β themselves
have a relative sign difference [1].

To get an intuition for this cancellation, note that the optical path length OPL = nL
determines the phase of the laser beam as it travels through the cavity. That means the
noise fluctuations in the phase are given by fluctuations in the optical path length:

d(OPL) = (β + nα)dT, (8)

assuming, for simplicity, a uniform temperature distribution in the cavity. This says that we
can eliminate thermal noise in the cavity if we choose α to be equal and opposite to β/n.

In this simplified case, TE and TR noise are 100 percent correlated, since both arise from
the same temperature fluctuations. In reality, however, the temperature distribution is not
uniform, as figure 3 suggests. And since TR probes an exponentially small region around
a propagating laser beam, while TE probes the surface of the cavity, we may only achieve
partial correlation at best.

Let’s look at the general, partially correlated case. Note that STO is the variance of a sum
of two random variables, associated with TE and TR noise respectively. As a result,

STO = STE + STR + 2R
√
STESTR, (9)

where R is the correlation coefficient between the TR and TE noise. We can get perfect
cancellation if R = −1 (perfect anti-correlation) and STE = STR. We expect to achieve this
anti-correlation by choosing α and β to have an opposite sign.

4 Finite Element Analysis

COMSOL and MATLAB have been used to simulate the sources of noise. The COMSOL
model utilizes Finite element analysis and the Fluctuation Dissipation theorem.
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Figure 3: Temperature distributions in the TIR cavity. Left: the temperature distribution
from TR calculations, which is confined to the propagating laser beam. Right: the temper-
ature distribution from TE calculations (with the displacement vector field), which remains
confined to the surface. Since the temperature distributions are different, we expect only
partial correlation.

4.1 Test Cases

Here, we check the COMSOL model for TR noise in cylindrical test masses, as presented
in Heinert et al [7]. The aim is to calculate the TR noise in a cylinder subject to adiabatic
boundary conditions (∇T = 0 at the boundary). Heinert et al. derives a plot for this
TR noise

√
Sz(f), where f is the frequency of a heat injection, following Levin’s approach.

The heat injection is assumed to be of the form of equation 2. If one further assumes
small temperature fluctuations, T (~r, t) in equation 2 can be taken as a constant ambient
temperature T0.

We assume the laser is a Gaussian beam. Hence, for the cylindrical test mass, we have
that f(~r) = β

πr20
e−r

2/r20 , where r is the distance from the center of the cylinder, and r0 is

the beam radius. We can therefore write q(~r) = Ae−r
2/r20 , where A ≡ βT0F0/(πr

2
0). Once

COMSOL calculates the temperature profile, the dissipation is calculated via equation 4,
and the TR noise is calculated via equation 1. Heinert’s paper derives a TR displacement
noise expression of

Sz(ω) =
16

π
kBT

2
0

Hκβ2

r40C
2
p

×
∞∑
n=1

a2n
[J0(an)]2

K2
n

ω2 + κ2a4n
C2

pR
4

(10)

where J0(x) is the zeroth order bessel function of the first kind, R is the radius of the cylinder,
H is the height, an is a zero of J1(x), and

Kn =

∫ 1

0

J0(anρ)e−((R/r0)ρ)
2

ρ dρ (11)
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The following noise plot in figure 4 was obtained for a silicon test mass at T0 = 10 K. The
solid line represents the analytical calculation, eq. 10, while the dots represent COMSOL’s
calculations. Two COMSOL models were used: a 1D axisymmetric model, and a full-scale
3D cylindrical model. Both use the fast steady-state frequency-domain approach for the heat
equation (eq. 5).

In figure 4, as well as many other of the upcoming plots, we find that the noise levels off
for low frequency. The intuition for this effect is that at low frequencies, the temperature is
able to equilibrate throughout the body; this uniform temperature implies that there are no
temperature gradients, and hence no heat flow.
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Figure 4: Displacement TR noise as a function of frequency f for silicon at 10 K. The
verification is shown for two different types of models in COMSOL. The 3D model (right)
is the most general model, and it still runs much faster than the previous time-dependent
model.

Figure 4 shows that a 1D axisymmetric model (left) and a full 3D model (right) in COMSOL
both yield agreement with the red analytical curve (eq. 10). It should also be emphasized
that the steady-state temperature approach in eq. 5 allowed these plots to be generated
much faster than before.

4.2 TIR Cavity

In the previous section, we found that the frequency domain, steady-state approach to ther-
mal noise calculations gives accurate results faster than the usual time-dependent approach.
We therefore use the same method for thermal noise in the TIR cavity. We assume that
the geometry in this case is a rectangular slab of width, length, and height W , L and H,
respectively. A laser beam is injected through the center of the slab. That laser, undergoing
total internal reflection, is assumed to not lose energy and that it reflects off of the center of
the cavity walls. With this setup, the goal is to calculate the overall thermo-optic noise.

We assume, as a first approximation, that the laser consists of four gaussian beams of the
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form e−(z
2+x′2)/r20 , where x′ denotes the horizontal distance from the beam’s propagation axis,

and z denotes the height. Interference effects at the reflection points are ignored, as are any
waists associated with the laser. For TR noise, then, we find that

q(~r) = Ae−z
2/r20 [exp[−(x sin θ − (y + L/2) cos θ)2/r20]

+ exp[−((x−W/2) sin θ + y cos θ)2/r20] + exp[−((x+W/2) sin θ − y cos θ)2/r20]

+ exp[−(x sin θ + (y + L/2) cos θ)2/r20]] (12)

is the heat injection that takes the form of the laser, where θ = tan−1(L/W ). Also, recall
that A ≡ βT0F0/(πr

2
0).

To calculate the thermal noise, COMSOL must solve equation 5 with this new heat injection.
Adiabatic boundary conditions are assumed. One important source of error is in the meshing
for this rectangular TIR cavity. We have created different meshing methods, from a uniform,
‘extra fine’, mesh to finely-meshed cylinders in the shape of the laser beam, surrounded by
a coarser mesh. Some different meshings of the TIR cavity are shown in figure 5. While a
uniform mesh may not give the most accurate result, it was chosen because other meshings
required too much memory for COMSOL to run the simulation.

Figure 5: Screenshot from COMSOL, showing a ‘sandwich’ meshing (left) and a cylinder
meshing (right). For the sake of adequate memory allocation, a uniform mesh turned out to
be the feasible option.

It is helpful to have an analytical solution to compare to COMSOL. Consider a rectangular
slab whose origin is at the center. The x, y, and z lengths are W , L, and H, respectively.
For adiabatic boundary conditions, we therefore require

(∇T )x|x=±W
2

= (∇T )y|y=±L
2

= (∇T )z|z=±H
2

= 0 (13)

for the temperature field, which satisfies the steady-state heat equation (eq. 5) where q is
the heat injection. In the absence of a heat injection, we know that T can be written as a
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Fourier series. Hence, we seek a solution of the form

T (~r) =
∑
lmn

almn cos (rlx) cos (rmy) cos (rnz) + blmn sin (slx) sin (smy) sin (snz) (14)

We will use the Fourier expansion of q(~r) to determine almm and blmm. The z-dependence
of q should be emphasized here: a Gaussian e−z

2/r20 , where r0 is the beam radius. This is an
even function, which means that we only need to keep the cosine terms in the expansion for
T (~r). In other words, blmn = 0. Since

∇T = −
∑
lmn

almn[rl sin(rlx) cos(rmy) cos(rnz),

rm cos(rlx) sin(rmy) cos(rnz), rn cos(rlx) cos(rmx) sin(rnx)], (15)

the boundary conditions (eqs. 13) give us

rlW

2
= lπ,

rmL

2
= mπ,

rnH

2
= nπ (16)

where l,m, n are integers. If we make them even integers, then we can write

T (~r) =
∑
even

almn cos

(
lπx

W

)
cos
(mπy

L

)
cos
(nπz
H

)
(17)

Our goal is to calculate to Sz(ω), which means we need to calculate the dissipation in eq. 4.
Using the orthogonality relation∫ W/2

−W/2
cos

(
lπx

W

)
cos

(
l′πx

W

)
dx =

W

2
δll′ (18)

we then obtain

Wdiss =
κπ2V

16T0

∑
even

|almn|2
(
l2

W 2
+
m2

L2
+
n2

H2

)
(19)

where V = WLH. This gives, using eq. 1,

Sz(ω) =
8kBT0
ω2

Wdiss

F 2
0

=
κkBπ

2V

2ω2F 2
0

∑
even

|almn|2
(
l2

W 2
+
m2

L2
+
n2

H2

)
(20)

Now we wish to determine almn. To do this, we plug T (~r) into equation 5 and expand q(~r)
as

q(~r) =
∑
even

clmn cos

(
lπx

W

)
cos
(mπy

L

)
cos
(nπz
H

)
, (21)

which means that

clmn =
8

V

∫
q(~r) cos

(
lπx

W

)
cos
(mπy

L

)
cos
(nπz
H

)
dV (22)

Equation 5 then gives

iωclmn = almn

[
iωCp + κ

(
l2π2

W 2
+
m2π2

L2
+
n2π2

H2

)]
(23)
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or,

|almn|2 =
c2lmn

C2
p + κ2π4

ω2

(
l2

W 2 + m2

L2 + n2

H2

)2 (24)

Plugging this into equation 20, we find that

Sz(ω) =
κkBπ

2V

2F 2
0

∑
even

|clmn|2

C2
pω

2
(
l2

W 2 + m2

L2 + n2

H2

)−1
+ κ2π4

(
l2

W 2 + m2

L2 + n2

H2

) (25)

For convenience, let dlmn = clmn/A. Then

Sz(ω) =
κkBT

2
0 β

2V

2r40

∑
even

|dlmn|2

C2
pω

2
(
l2

W 2 + m2

L2 + n2

H2

)−1
+ κ2π4

(
l2

W 2 + m2

L2 + n2

H2

) (26)

We considered the following parameters: L = W = H = 4 cm, T = 120 K, r0 = 2 mm,
β = 8.7 × 10−5 K−1, Cp/ρ = 328 J/kg/K, ρ = 2331 kg/m3, α = −0.057 × 10−6 K−1 and
κ = 615 W/m/K. Given these parameters, the Fourier coefficients were plotted to determine
the proper cutoff indices in the triple sum of equation 26 . Note that the heat injection can
be written in the form q(~r) = q(z)q(x, y). This separation of variables means that we can
write dlmn = dndlm, where dn is the z-component of the Fourier coefficient, and dlm is the
xy component of the Fourier series. These coefficients are shown in figure 6. They suggest
that we can truncate the series at n = 30 and l = m = 20.

0 5 10 15 20 25 30 35 40
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

n

z 
Fo

ur
ie

r C
om

po
ne

nt

0 5 10 15 20 25 30
0

5

10

15

20

25

30
0

0.2

0.4

0.6

0.8

1

1.2

1.4

l

m

xy
 F

ou
rie

r C
om

po
ne

nt

Figure 6: The z-component should go out to about 30 terms, while the xy components
should go out to about 20 terms. Moreover, the diagonal m = l only contributes to the
Fourier series, allowing us to neglect many terms.

By contrast, a beam size of r0 = 0.1 mm requires many more terms, as indicated in figure
7. This makes sense for the following the reason. The Fourier series terms have an effective
wavelength which go as L/m. For an accurate solution, we need to resolve down to the
smallest length scales, which means that mmax satisfies L/mmax ∼ r0. Hence, if L ∼ 10−2 m
and r0 ∼ 10−4 m, then mmax ∼ 102.
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Figure 7: A smaller beam size requires more terms before the Fourier Series converges.

Taking these plots into account, we can have more confidence in the accuracy of the analytical
Fourier Series solution. The analytical solution in equation 26 therefore gives a tool for
assessing the accuracy of the numerical solution. Furthermore, there is a separate analytical
solution given in appendix E of Braginsky et al. 2004 [8]:

Sz(ω) =
kBT

2

π

2β2

κ

√
W 2 + L2

∫ ∞
0

xe−x dx(
ωr20Cp

2κ

)2
+ x2

(27)

These two analytical solutions allow us to assess the accuracy of the meshing. At the moment,
it appears that a uniform meshing is giving the closest agreement to the analytical model.
The left plot of figure 8 shows the agreement between the analytical and numerical models.
A reference line is shown, taking a high frequency limit in equation 27. The differences
between the analytical and numerical solutions are likely attributed to meshing inaccuracies.
In COMSOL, the mesh size runs from 0.008 to 0.11 cm. Meanwhile, the smallest length scale
is the thermal wavelength rth =

√
κ/(Cpω) ∼ 10−2 cm for a frequency of 104 Hz. The mesh

size is often larger than this, indicating that meshing could be an issue at high frequencies.
Furthermore, a beam size of 1 mm may also yield some meshing difficulties, since that is
slightly below the maximum mesh size.

The plot on the right of 8 shows the comparison between TR frequency noise and the best
coating cavity frequency noise [2]. TR displacement noise was converted to frequency noise
Sf via

Sf (ω) =
Sz(ω)

L2
roundtrip

( c
λ

)2
(28)

where Lroundtrip = 2
√
W 2 + L2 is the roundtrip path length of the laser, c is the speed of

light, and λ = 1550 nm is the wavelength of the laser light. An optimal TIR cavity should
beat the coating frequency noise. This, however, does not happen for the TR noise. From
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here, the hope is to get the TO noise curve below the coating cavity curve by achieving
cancellation.
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Figure 8: The COMSOL solution for
√
Sz(f) is compared with the Braginsky and Fourier

series solutions. The agreement is better for a larger beam radius such as r0 = 2 mm, which
may be attributed to better mesh resolution and faster Fourier series convergence. A uniform
‘finer’ mesh was used in COMSOL, giving the best agreement among the other sandwich
and cylinder meshing ideas. This TR noise is compared with the best coating cavity noise,
which turns out to be much smaller.

Hence, the next step in the TIR thermal noise calculation is to calculate the TE noise. We
follow the method outlined in section 3.5 for calculating TE noise. For the TIR cavity,
the applied strain is F0e

−r2/r20/(πr20) (removing the oscillatory term for the steady-state
approach), directed normally incident upon the faces of the cavity. The elastic displacement
field is shown on the right of figure 9. If we can get TE to be on a similar level as TR, it
becomes possible to obtain cancellation. Unfortunately, figure 9 shows that the TE and TR
noise are on vastly different orders of magnitudes.

To account for the different TE noise value, α was increased to −1.31×10−4 K−1, an artificial
value used to make TE and TR noise on similar magnitudes. With this new value for α,
TO noise was calculated in COMSOL. The TO noise calculation requires solving both the
elastic displacement field equations (as in equation 6) and the heat equation. The combined
heat injection is qTE(~r) + qTR(~r), where qTR is the thermorefractive heat injection from
the laser beam (eq. 12) and qTE is the thermoelastic heat injection (eq. 7). With the
subsequent temperature distribution, one then calculates Wdiss as usual, leading to a value
for the thermo-optic noise STO(ω). And with values for STO, STE, and STR, equation 9 was
used to calculate the correlation coefficient between TE and TR noise. Figure 10 shows that
the TE and TR noise have partial correlation (magnitude less than 1), but not enough to
completely cancel TO noise. Moreover, the cancellation is still not enough for the frequency
noise to become smaller than the current best reflective cavities as presented in Kessler et
al.
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Figure 9: TE calculations. Left: The TE noise is much lower than TR for the current values
of α and β. Cancellation will not be possible. Right: The TE noise calculation requires
solving for the elastic displacement field, which was calculated in COMSOL.
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Figure 10: TO noise is calculated here (shown in green on the left plot). Notice that the TO
curve is lower than the individual TE and TR curves, which suggests partial cancellation.
Indeed, the plot on the right shows that we have a negative correlation coefficient that is not
equal to −1. α was scaled to −1.31× 10−4 to put TE noise on a similar order of magnitude
as TR. A ‘fine’ mesh was used in COMSOL.

5 Conclusion

The TO noise shown in figure 10 indicates that the thermal noise is only partly correlated,
leading to partial correlation. This partial correlation may be attributed to the fact that TR
noise only arises from a small region around the reflection face of the laser beam, while TE
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Figure 11: The TO noise is usually orders of magnitude larger than the coating cavity noise.
Currently, the TIR cavity has too much noise to be used as a substitute.

noise arises from the entire bulk.

The overall noise in our theoretical optical cavity is too large compared to the current best
optical cavities with coatings. Before giving up on this cavity, we can explore whether
changes in the geometry of the TIR cavity would lead to better results. We could also do
an optimization to get TE and TR closer together.

Appendix: COMSOL Inputs

In this paper, the two partial differential equations being dealt with are

iωCpT (~r)− κ∇2T (~r) = iωq(~r) (29)

and
(1− 2σ)∇2~u+∇(∇ · ~u) = 0, (30)

To solve this in COMSOL, a stationary solver is used with the coefficient form differential
equation module. The equation that COMSOL solves has the form

ea
∂2u

∂t2
+ da

∂u

∂t
+∇ · (−c∇u− ~αu+ ~γ) + ~β · ∇u+ au = f (31)

It should be emphasized that the operator ∇ in this module is only correct for Cartesian
coordinates. For a general coordinate system ξ1, ξ2, ξ3, COMSOL assumes∇ = ( ∂

∂ξ1
, ∂
∂ξ2
, ∂
∂ξ3

),
which is not true in general.

Assuming Cartesian coordinates, we see that our choice of coefficients for 29 is ea = da =
~γ = ~β = 0, a = iωCp, c = κ, and f = iωq(~r), where q(~r) is either the TR, TE, or TO
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heat injection. For this equation, the ‘zero flux’ condition in COMSOL is used to implement
adiabatic boundary conditions.

Now, 30 requires three Coefficient form modules to be used at once; this is a vector equation
whose individual components are coupled. To see how this works, let’s look at the ux
component of the equation. In this case, we can write

− (1− 2σ)

(
∂2ux
∂x2

+
∂2ux
∂y2

+
∂2ux
∂z2

)
=
∂2ux
∂x2

+
∂2uy
∂x∂y

+
∂2uz
∂x∂z

(32)

In this case, we set c = 1− 2σ, f = ∂2ux
∂x2

+ ∂2uy
∂x∂y

+ ∂2uz
∂x∂z

, and zero for all the other coefficients.

The oscillating stress is implemented as a Flux/Source boundary condition. Recall that these
stresses are directed inward on all sides of the x and y faces. The sign of the flux depends
on its direction, which is either positive or negative. For the ux component, I have a flux of
F0e

−(y2+z2)/r20/(πr20) on the positive side. I have neglected the oscillating time dependence
because of the steady-state assumption that the elastic displacement also oscillates with the
same time dependence (at a different phase). In other words, the time dependence is not
necessary because it cancels out.
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