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Abstract

Lasers need to have low frequency and phase noise when used in high-precision measurements
(such as gravitational wave detection). The overall aim of this project is to reduce the
frequency and phase noise specific to temperature fluctuations in an optical cavity. There are
two forms of thermal noise, namely thermoelastic noise (associated with length fluctuations)
and thermorefractive noise (associated with index of refraction fluctuations). Our optical
cavity is a rectangular block, utilizing total internal reflection. Analytical and Finite element
thermorefractive thermal noise calculations are presented here for this cavity. In the future
these thermal noise calculations will be used to find a material that minimizes the total
thermal noise. Faster methods are employed for calculating this thermal noise: the heat
equation is solved using a steady-state, transient free ansatz. Moreover, we are searching for
the best mesh distribution that solves the problem quickly and accurately.

1 Motivation

Laser frequency stabilization is important for use in high-precision measurements (such as
gravitational wave detection). The cavity from which the laser originates contains many
sources of noise, such as thermal and mechanical fluctuations [3]. To achieve the precision
necessary for gravitational wave detection, this project aims to reduce noise in these cavities.
Optical cavities often contain highly reflective coatings, which have the problem of high
mechanical (Brownian) noise. As a result, this project removes the reflective coatings in the
resonator and instead uses total internal reflection. The goal will then be to minimize the
thermal noise associated with this cavity.

2 TIR Cavity

Figure 1: Our total internal reflection cavity. A prism and cavity are separated a distance on
the order of the wavelength of the laser light. When the light enters the prism, an evanescent
part of the light enters the cavity (a process called frustrated total internal reflection).

Our optical cavity removes all of the multilayer coatings that are usually present. In doing
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so, losses upon reflection are reduced; as mentioned previously, Brownian noise is prevalent
in multilayer coatings. The cavity operates by using total internal reflection (TIR). For this
to work, it must be that n2 < n1 [1], where n1 is the index of refraction of the cavity, and
n2 is the index of refraction of the surrounding medium.

Furthermore, the angle of incidence θ inside of the medium n1 must satisfy sin θ > n2/n1 for
TIR to occur. This means that the values by which n1 and n2 differ depends on the geometry
of the cavity. For example, if we describe total internal reflection inside of a square, θ = 45◦,
so n1/n2 > 1.41. For a triangle, meanwhile, n1/n2 > 2.

How does the light first get into and out of the cavity? It “leaks” into the cavity by use of
frustrated total internal reflection. Here, another material is placed a distance of order λ
(light wavelength) from the cavity. This allows an evanescent wave to travel into and out of
the cavity.

3 Thermal Noise

Gravitational wave interferometers deal with many sources of noise, which is why it is im-
portant to have a strong signal. The arms of the interferometer contain optical cavity “test
masses,” which are used to amplify the laser beam signal. For this optical cavity, thermal
noise is the most relevant, and this project seeks to minimize this thermal noise. There are
three sources of thermal noise: Brownian noise, Thermoelastic (TE) noise, and Thermore-
fractive (TR) noise.

3.1 Fluctuation Dissipation Theorem

The Fluctuation Dissipation theorem (FDT) will be the primary tool used to calculate the
thermal noise. The central idea of the FDT is that fluctuations cause dissipation. Hence,
if we have low fluctuations, there will also be low dissipation. Notice that this is relating a
microscopic property to a macroscopic property. The dissipation (a macroscopic property)
is usually the observed property, which means that it can be used to infer the thermal
fluctuations.

3.2 Levin’s Approach

Levin’s approach utilizes the FDT to calculate thermal noise. The technique works for non-
uniform dissipation and an arbitrary laser beam size. To calculate the thermal noise Sz(f) at
a frequency f , one applies an oscillatory generalized force F0 cos(2πft)f(~r) to the geometry
of interest (the “test mass”) [4]. f(~r) indicates the shape of the laser beam on the surface of
that geometry. In this process, one can calculate Wdiss, the dissipation associated with the
friction of the test mass. In the Levin paper, Sz(f) can then be calculated via

Sz(ω) =
8kBT

ω2

Wdiss

F 2
0

(1)

where T is the temperature of the test mass. Note that the F0 term is not necessary to
calculate because it cancels out with the F0 in the expression for Wdiss.
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3.3 Brownian Noise

We have previously mentioned Brownian Noise when discussing reflective coatings. This is
an effect that arises out of Brownian motion, where particles in a fluid are observed to jostle
randomly while suspended in a fluid. It was first discovered in 1828, but remained a mystery
until Einstein, in 1905, used the finding to demonstrate the existence of atoms. Brownian
motion can be described using the Diffusion equation, where particles move from high to low
concentrations. Brownian noise manifests itself as slight, fluctuating distortions in the shape
of the cavity. Brownian noise can occur in an optical cavity’s reflectors, and is especially
prevalent in multilayer mirror coatings.

3.4 Thermorefractive Noise

The second source source of noise is thermorefractive (TR) noise, caused by fluctuations in
the index of refraction of the cavity. The result of these fluctuations is that radiation in the
cavity develops random fluctuations in its phase. The parameter β ≡ ∂n

∂T
characterizes this

TR noise (where n is the index of refraction). For Thermorefractive noise (see description
below), the generalized force of the Levin Approach has the form of an oscillatory heat source
[5]:

q(~r, t) = T (~r, t)F0 cos(2πft)f(~r) (2)

where T (~r, t) describes the temperature distribution at a point ~r and time t. f(~r) describes
the shape of the laser beam as it propagates through the cavity. Given the heat source in
equation 2, one can solve for the temperature distribution via the heat equation:

Cp
∂T

∂t
− κ∇2T = q̇(~r, t), (3)

where Cp is the heat capacity per volume at constant pressure and κ is the thermal con-
ductivity. Now, temperature gradients are the true quantities of interest because they cause
heat flux—and therefore energy dissipation—in the test mass. The dissipation is related to
the temperature gradient via

Wdiss =
1

2T0

∫
V

κ|∇T |2 dV (4)

where κ is the thermal conductivity and T0 is a homogeneous reference temperature of the
test mass. From this, one can use the FDT (eq. 1) to calculate the thermal noise.

In last year’s approach, the TR noise was calculated by solving for the time-dependent
solution T (~r, t) (eq. 3). Here, the goal is a less computationally expensive approach. We
assume a steady-state temperature T (~r, t) = T (~r)eiωt, given a heat injection q(~r, t) = q(~r)eiωt,
which yields a stationary differential equation of the form

iωCpT (~r)− κ∇2T (~r) = iωq(~r) (5)

With this method, one can use eq. 4 without dealing with transient temperature distribu-
tions.
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3.5 Thermoelastic Noise

The third source of noise is thermoelastic (TE) noise, which arises from thermal fluctuations
in a cavity’s mirror and optical coatings. These thermal fluctuations cause the cavity to
create small, fluctuating deformations throughout its surface. These geometry changes then
cause fluctuations (i.e. noise) in the laser’s frequency. TE noise is characterized by an
expansion coefficient α.

3.6 Thermo-optic Noise

TE and TR noise can be combined together, which is the aim of this project. Evans et. al
[2] showed that in a cavity with multilayer coatings, the TE and TR mechanisms have a
negative relative sign in the overall thermal noise (“thermo-optic” noise) spectrum, leading
to possible thermal noise cancellation. However, this relative negative sign does not occur
with coating-less cavities. As a result, last year’s project sought materials whose parameters
α and β themselves had a relative sign difference (as opposed to a sign difference in the
power spectrum) [3].

Since TE and TR noise both derive from the same source—thermal fluctuations—it is rea-
sonable to suspect correlation between the two noise sources. Indeed, last year’s project
found that TE and TR noise are at least somewhat correlated. The more correlated these
sources are, the more cancellation between α and β is possible. A long-term goal of this
project is to determine this noise correlation.

4 Finite Element Analysis (Progress so Far)

COMSOL and MATLAB are being used to simulate the sources of noise. The COMSOL
model utilizes Finite element analysis and the Fluctuation Dissipation theorem.

4.1 Test Cases

Progress has been made in verifying the COMSOL model for TR noise in cylindrical test
masses, as presented in Heinert et al [5]. Here, the aim is to calculate the TR noise in a
cylinder subject to adiabatic boundary conditions (∇T = 0 at the boundary). Heinert et
al. derives a plot for this TR noise

√
Sz(f), where f is the frequency of a heat injection,

following Levin’s approach. The heat injection is assumed to be of the form of equation 2.
If one further assumes small temperature fluctuations, T (~r, t) in equation 2 can be taken as
a constant ambient temperature T0.

We a assume the laser is a Gaussian beam. Hence, for the cylindrical test mass, we have
that f(~r) = β

πr20
e−r

2/r20 , where r is the distance from the center of the cylinder, and r0 is

the beam radius. We can therefore write q(~r) = Ae−r
2/r20 , where A ≡ βT0F0/(πr

2
0). Once

COMSOL calculates the temperature profile, the dissipation is calculated via equation (3),
and the TR noise is calculated via equation (1). Heinert’s paper derives a TR displacement
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noise expression of

Sz(ω) =
16

π
kBT

2
0

Hκβ2

r40C
2
p

×
∞∑
n=1

a2n
[J0(an)]2

K2
n

ω2 + κ2a4n
C2

pR
4

(6)

where J0(x) is the zeroth order bessel function of the first kind, R is the radius of the cylinder,
H is the height, an is a zero of J1(x), and

Kn =

∫ 1

0

J0(anρ)e−((R/r0)ρ)
2

ρ dρ (7)

The following noise plot in figure 2 was obtained for a silicon test mass at T0 = 10 K. The
solid line represents the analytical calculation, eq. 6, while the dots represent COMSOL’s
calculations. Two COMSOL models were used: a 1D axisymmetric model, and a full-scale
3D cylindrical model. Both gave close to the same result.
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Figure 2: Displacement TR noise as a function of frequency f for silicon at 10 K. The
verification is shown for two different types of models in COMSOL. The 3D model (right)
is the most general model, and it still runs much faster than the previous time-dependent
model.

Figure 2 shows that a 1D axisymmetric model (left) and a full 3D model (right) in COMSOL
both yield agreement with the red analytical curve (eq. 6). It should also be emphasized
that the steady-state temperature approach in eq. 5 allowed these plots to be generated
much faster than before.

The next step was to provide a similar verification for TE noise, using the same steady-
state method as before. For these calculations, we referred to the Duan paper [6]. Duan
calculates thermo-optic noise (referred to as “thermoconductive” noise in the paper) of a
cylinder of height H and radius R using a different analytical approach than Heinert et al.
The calculation is of the thermoconductive phase noise

Sφ(f) =
4π2

λ2
H2(β + nα)2SδT (f), (8)
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where ST (f) is the noise associated with thermal fluctuations, and is related to thermo-optic
displacement noise via Sz(f) = H2(β + nα)2ST (f). (One also needs to divide Heinert’s ex-
pression by 4π to match Duan’s Fourier Transform convention). Duan’s analytical expression
for Sφ then amounts to

Sφ(ω) =
2HkBT

2(β + nα)2

λ2r40κ

∫ ∞
1

dζ ′
∫ ∞
1

dζ
eiψ0(ζ−ζ′)

ζ2ζ ′2

∫ R

0

r3 exp

[
−r

2

r20

(
1

ζ
+

1

ζ ′

)]
, (9)

where ψ0 = ωr20/(4D) = πfr20/(2D) and D = κ/Cp. It turns out that an additional factor
of 2 multiplies this Sφ expression because Duan’s Fourier Transform only takes into account
positive frequencies.

This integral was evaluated in Mathematica due to numerical noise in MATLAB’s calcula-
tion. The calculation in Mathematica was very slow, so the upper limits on ζ and ζ ′ were
often truncated, but an infinite upper limit is possible, as suggested in figure 3.
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Figure 3: There is a maximum disagreement of 10 percent between the Heinert (blue) and
Duan (red) curves, which occurs at the low frequency regime. Such a discrepancy has been
attributed to lack of experimental investigation into this regime. The relevant parameters
for equations 9 and 6 can be found in section V of the Duan paper.

There is a disagreement between the Duan and Heinert models at low frequencies. Still, the
COMSOL model maintains the best agreement with the Heinert model. Using the Duan
parameters given in section V of the paper, the TE, TR, and TO noises were calculated (all
of which are scalar multiples of ST (f)), producing figure 4.
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Figure 4: Noise spectrum for the Duan parameters. The TO spectrum is greater than the TE
and TR spectrum because α and β are both positive. The solid line represents the Heinert
Calculation, while the points represent the COMSOL FEA calculation.

The agreement obtained between the COMSOL model and Heinert’s solution lend credence
to (1) our steady-state approach of solving the heat equation (eq. 5) and (2) Heinert’s
analytical solution in eq. 6.

4.2 TIR Cavity

The previous section gave credence to our steady-state approach in thermal noise calcula-
tions. We therefore use the same method for thermal noise in the TIR cavity. The geometry
in this case is a rectangular slab of width, length, and height W , L and H, respectively. A
laser beam is injected through the center of the slab. That laser, undergoing total internal
reflection, is assumed to not lose energy and that it reflects off of the center of the cavity
walls. With this setup, the goal is to find a material that minimizes thermo-optic noise. Last
year, some cancellation was observed for Sapphire at 300 K, using cylindrical test masses
and the negative of its usual thermal expansion coefficient. In this case, it was found that
the noises were correlated, which meant that cancellation of the noises was possible.

We assume, as a first approximation, that the laser consists of four gaussian beams of the
form e−(z

2+x′2)/r20 , where x′ denotes the horizontal distance from the beam’s propagation axis,
and z denotes the height. Interference effects at the reflection points are ignored, as are any
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waists associated with the laser. For TR noise, then, we find that

q(~r) = Ae−z
2/r20 [exp[−(x sin θ − (y + L/2) cos θ)2/r20]

+ exp[−((x−W/2) sin θ + y cos θ)2/r20] + exp[−((x+W/2) sin θ − y cos θ)2/r20]

+ exp[−(x sin θ + (y + L/2) cos θ)2/r20]] (10)

is the heat injection that takes the form of the laser, where θ = tan−1(L/W ). Also, recall
that A ≡ βT0F0/(πr

2
0).

To calculate the thermal noise, COMSOL must solve equation 5 with this new heat injection.
Adiabatic boundary conditions are assumed. The current work has been on establishing
a reliable mesh size for this rectangular TIR cavity. We have created different meshing
methods, from a uniform, ‘extra fine’, mesh to finely-meshed cylinders in the shape of the
laser beam, surrounded by a coarser mesh. At this point, it is still unclear which mesh is
the best, but the most promising appears to be a uniform mesh. Some different meshings of
the TIR cavity are shown in figure 5.

Figure 5: Screenshot from COMSOL, showing a ‘sandwich’ meshing (left) and a cylinder
meshing (right). So far, it is unclear which mesh is the best, but comparison with an
analytical model could help resolve this issue.

One way to find an ideal mesh is to compare the mesh’s noise result with an analytical
calculation. Consider a rectangular slab whose origin is at the center. The x, y, and z
lengths are W , L, and H, respectively. For adiabatic boundary conditions, we therefore
require

(∇T )x|x=±W
2

= (∇T )y|y=±L
2

= (∇T )z|z=±H
2

= 0 (11)

for the temperature field, which satisfies the steady-state heat equation (eq. 5) where q is
the heat injection. In the absence of a heat injection, we know that T can be written as a
Fourier series. Hence, we seek a solution of the form

T (~r) =
∑
lmn

almn cos (rlx) cos (rmy) cos (rnz) + blmn sin (slx) sin (smy) sin (snz) (12)
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We will use the Fourier expansion of q(~r) to determine almm and blmm. The z-dependence
of q should be emphasized here: a Gaussian e−z

2/r20 , where r0 is the beam radius. This is an
even function, which means that we only need to keep the cosine terms in the expansion for
T (~r). In other words, blmn = 0. Since

∇T = −
∑
lmn

almn[rl sin(rlx) cos(rmy) cos(rnz),

rm cos(rlx) sin(rmy) cos(rnz), rn cos(rlx) cos(rmx) sin(rnx)], (13)

the boundary conditions (eqs. 11) give us

rlW

2
= lπ,

rmL

2
= mπ,

rnH

2
= nπ (14)

where l,m, n are integers. If we make them even integers, then we can write

T (~r) =
∑
even

almn cos

(
lπx

W

)
cos
(mπy

L

)
cos
(nπz
H

)
(15)

Our goal is to calculate to Sz(ω), which means we need to calculate the dissipation in eq. 4.
Using the orthogonality relation∫ W/2

−W/2
cos

(
lπx

W

)
cos

(
l′πx

W

)
dx =

W

2
δll′ (16)

we then obtain

Wdiss =
κπ2V

16T0

∑
even

|almn|2
(
l2

W 2
+
m2

L2
+
n2

H2

)
(17)

where V = WLH. This gives, using eq. 1,

Sz(ω) =
8kBT0
ω2

Wdiss

F 2
0

=
κkBπ

2V

2ω2F 2
0

∑
even

|almn|2
(
l2

W 2
+
m2

L2
+
n2

H2

)
(18)

Now we wish to determine almn. To do this, we plug T (~r) into equation 5 and expand q(~r)
as

q(~r) =
∑
even

clmn cos

(
lπx

W

)
cos
(mπy

L

)
cos
(nπz
H

)
, (19)

which means that

clmn =
8

V

∫
q(~r) cos

(
lπx

W

)
cos
(mπy

L

)
cos
(nπz
H

)
dV (20)

Equation 5 then gives

iωclmn = almn

[
iωCp + κ

(
l2π2

W 2
+
m2π2

L2
+
n2π2

H2

)]
(21)

or,

|almn|2 =
c2lmn

C2
p + κ2π4

ω2

(
l2

W 2 + m2

L2 + n2

H2

)2 (22)
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Plugging this into equation 18, we find that

Sz(ω) =
κkBπ

2V

2F 2
0

∑
even

|clmn|2

C2
pω

2
(
l2

W 2 + m2

L2 + n2

H2

)−1
+ κ2π4

(
l2

W 2 + m2

L2 + n2

H2

) (23)

For convenience, let dlmn = clmn/A. Then

Sz(ω) =
κkBT

2
0 β

2V

2r40

∑
even

|dlmn|2

C2
pω

2
(
l2

W 2 + m2

L2 + n2

H2

)−1
+ κ2π4

(
l2

W 2 + m2

L2 + n2

H2

) (24)

We considered the following parameters: L = W = H = 4 cm, T = 120 K, r0 = 1 mm,
β = 8.7 × 10−5 K−1, Cp/ρ = 328 J/kg/K, ρ = 2331 kg/m3, and κ = 615 W/m/K. Given
these parameters, the Fourier coefficients were be plotted to determine the proper cutoff
indices in the triple sum of equation 24 . Note that the heat injection can be written in the
form q(~r) = q(z)q(x, y). This separation of variables means that we can write dlmn = dndlm,
where dn is the z-component of the Fourier coefficient, and dlm is the xy component of the
Fourier series. These coefficients are shown in figure 6. They suggest that we can truncate
the series at n = 50 and l = m = 30.
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Figure 6: The z-component should go out to about 50 terms, while the xy components
should go out to about 30 terms. Moreover, the diagonal m = l only contributes to the
Fourier series, allowing us to neglect many terms.

By contrast, a beam size of r0 = 0.1 mm requires many more terms, as indicated in figure
7. This makes sense for the following the reason. The Fourier series terms have an effective
wavelength which go as L/m. For an accurate solution, we need to resolve down to the
smallest length scales, which means that mmax satisfies L/mmax ∼ r0. Hence, if L ∼ 10−2 m
and r0 ∼ 10−4 m, then mmax ∼ 102.

Taking these plots into account, we can have more confidence in the accuracy of the analytical
Fourier Series solution. The analytical solution in equation 24 therefore gives a tool for
assessing the accuracy of the numerical solution. The next plot (figure 8) compares this
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Figure 7: A smaller beam size requires more terms before the Fourier Series converges.

solution with COMSOL. With more confidence in the analytical solution’s accuracy, we
can more likely attribute error to the meshing. At the moment, it appears that a uniform
meshing is giving the closest agreement to the analytical model.

The differences between the analytical and numerical solutions are likely attributed to mesh-
ing inaccuracies In COMSOL, the mesh size runs from 0.008 to 0.11 cm. Meanwhile, the
smallest length scale is the thermal wavelength rth =

√
κ/(Cpω) ∼ 10−2 cm for a frequency

of 104 Hz. The mesh size is often larger than this, indicating that meshing could be an
issue at high frequencies. Furthermore, a beam size of 1 mm may also yield some meshing
difficulties, since that is slightly below the maximum mesh size.

The following is a tentative time frame for the remainder of the project.

1. Verify the best mesh for the TIR cavity.

2. Calculate the TE noise for the rectangular cavity. We suspect that to apply the Levin
approach here, we need to apply an oscillating force to both the inside (via a heat
injection) and the outside (via a strain distribution).

3. Explore the parameter space (time permitting). Find the optimum parameter set
that reduces thermal noise. Upon calculating the thermal noise, the goal is to find a
material where this noise is minimized. The goal is to achieve cancellation of these two
coefficients by finding the right material. If such a material can be found, the goal will
be to build a setup for laser stabilization with that material. This could help identify
unknown sources of noise.
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Figure 8: Equation 24 was used to calculate the analytical plot of
√
Sz(f) (red), truncating

the sum at n = 60 and l = m = 40 on the left, n = 50, m = l = 30 in the middle (the
minimum required from figure 6), n = 20 and l = m = 10 on the right. Moreover, only
l = m terms were included in the sum. The blue numerical solutions (same for all) is given
a uniform, finer mesh. So far, this uniform mesh gives the best observed agreement with the
analytical model.
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