
Blend Glitches - Sources and Solutions
Brian Lantz, Hugo Paris, and the Seismic Team

T1400284-v2, April 17, 2014

1 Summary

We describe and model the sources of the glitches affecting the blend switching and describe two
things to help fix the issue. The glitches are caused by the transition between the different filter
modules in the Blend Switch algorithm. The Blend Switch is described in detain in T1200126, the
“Blend Switching User Guide” by Ruslan Kurdyumov and Chris Kucharczyk. The ramp which
transitions from one blend to the next is a simple linear ramp, and the kinks at the start and
end are introducing high frequency features. Those features are quite apparent because the T240
signals in the paths are large, and since we are using level 3 control, the controllers have high gain
at high frequency. The product of (large input signal) * (kink) * (large high frequency drive) can
cause glitches in the control output large enough to saturate the DAC and cause a watchdog trip.

The solution is two-fold. First, replace the linear ramp with the much smoother fifth-order
polynomial ramp described in T1300510. This greatly reduces the generation of high-frequency
components in the time series. Second, change the turn-on procedure so that we do not restore
the tip and tilt targets for stage 1 of the BSC-ISI (the location of the offendingT240s). This will
greatly reduce the low frequency amplitude of the T240 signals during the turn on process. We
may also adjust the start times of the blend switcher to offset the effects of the various degrees of
freedom. In figure 1 we show the example glitch used in this document. It is from a set of glitches
described in the Hanford aLOG entry 10539 by Jeff Kissel. It is important to note that the largest
glitches are in the horizontal direction.

Figure 1: Example of blend-induced glitches, Hanford aLOG 10539

https://dcc.ligo.org/T1400284
https://dcc.ligo.org/T1200126
https://dcc.ligo.org/T1300510
https://alog.ligo-wa.caltech.edu/aLOG/index.php?callRep=10539

2 Problem Discussion

The relevant feature of the Blend Switcher is that there are 2 parallel paths, the Current (CUR)
filter which is running at the start of the Blend Switch process, and the Next Filter (NXT) which
has been select. When a switch is requested, the new blend filter in loaded into the NXT bank,
the NXT bank is allow to settle for 5 seconds, and then a 5 second linear ramp is applied to move
from the CUR to the NXT. The linear ramp has a sharp corner at the beginning and end, so there
if there is a large difference between the outputs of the CUR and NXT filters, then a short, high-
frequency signal will be imposed on the control signal. If there is significant gain in the controller
at high frequency (which is especially true for the level 3 controllers, then a spike will be generated
at the control output. This spike is the cause of the glitching of the Blend Filters. This has become
apparent as:

1. The T240s are not used in the servo in the ‘Blend Start’. As the system comes on, there is
tilt on the table, especially when the Targets tilt levels are restored. This means that there
are large, slowly moving signals in the T240 channels. The Blend start filter will have a 0 as
the output of the T240 blend filter, by design, since the T240 is not used during start, but
the output of the T240 NXT filter will typically not be 0 and so the difference can be quite
large.

2. The ramp in use now is a straight linear ramp. As the Switcher moves from CUR bank over
to the NXT bank, the output of the filter bank, ‘Blend Out’ for a sensor is

Blend Out = r × CUR + (1− r)×NXT (1)

where r is the ramp function which moves, in this case, from 1 to 0. The ramp in use now is
a linear ramp which moves from 1 to 0 in 5 seconds. Thus, it has distinct kinks at each end.
To better illustrate the current problem, Blend Out can be rewritten as

Blend Out = r × (CUR−NXT) + 1×NXT (2)

3. The upper unity gain frequencies for the stage 1, level 3 control loops are about 40 Hz. To
achieve this while compensating for the various roll-offs in the plant, the isolation controllers
plus drive compensation filters have significant gain above 100 Hz.

3 Problem Simulation

We used NDS2 and LigoDV to pull data from the science frames. We pull the H2 drive channel
(which caused the glitches) which is recorded at 512 samples/ sec. We pulled the outputs of the
various blend filters, CUR and NXT, for the X channel CPS, T240, and L-4C. These data are
from the epics OUT16 channels, and only saved at 16 samples per second. We resample them
up to 4096. We load the X isolation filter and the H2 drive filters from the (somewhat later,
but essentially the same) foton filters. We simulate the 4096 data into the X isolation control
filter by applying the ramp function to the resampled data at the output of the CUR and NXT
filters. This is an inexact method, but it clearly shows glitches in the simulated output at the
same time we see glitches in the recorded output. As we will see, in the interest of getting the
problem fixed quickly, the simulation calculations are only cursory. The matlab code for this is in
{SeismicSVN}/seismic/BSC-ISI/Stanford/glitch calc/plot glitch info.m.

Figure 2 shows the transfer function of the Level-3 Isolation controller for Stage 1 X of ETMX
(non-boosted), the output filter for the stage 1, H2 coil driver, and the full path which the product

2

of the 2 control filters and the -2/3 projection element of the CART2DRIVE output matrix. We
only plot the magnitude because it the large magnitude at high frequency which is the item of
interest here.

10
−1

10
0

10
1

10
2

10
3

10
0

10
1

10
2

10
3

10
4

M
ag

ni
tu

de
 (

ab
s)

X control and output filter and chain

Frequency (Hz)

ST1 X Iso, level 3
H2 output filter
Full chain including matrix element

Figure 2: Magnitude of the isolation drive path. This includes the stage 1, Level 3, X controller,
the -2/3 projection from X to H2, and the H2 drive output filter.

The gain peaks around 150 Hz, so it is not surprising that small, high frequency glitches at the
input will generate big peaks at the output.

In figure 3, we see a series of glitches in the drive signal for H2. There are 3 glitches, located
at the WD trip, and 5 and 10 seconds before. NOTE that the timing here is a bit rough, since
much of the data is reconstructed from epics channels. These times correspond with the start of
the first ramp (-10 sec), the end of the first ramp (-5 seconds), and the start of the second ramp
(zero seconds) as seen in other data not plotted (from the MIXSTATE channel). We are going to
try simulate this first glitch.

3

−14 −12 −10 −8 −6 −4 −2 0 2
−15

−10

−5

0

5
x 10

4 Drive seen on channel H1:ISI−ETMX_ST1_MASTER_H2_DRIVE_DQ

time (sec)

dr
iv

e
(c

ou
nt

s)

−10.1 −10.05 −10 −9.95 −9.9 −9.85
−3

−2

−1

0

1

2

3
x 10

4 Detail of drive signal at FIRST glitch

cr
ea

te
d

by
 p

lo
t_

gl
itc

h_
in

fo
 o

n
14

−
A

pr
−

20
14

Figure 3: Glitches seen in the H2 drive channel. The detail of the first glitch is shown in the lower
plot. The data samples are1/512 sec apart, so the glitch is very fast. Note that this channel has
been down sampled for the framebuilder, so there is likely some signal distortion.

To simulate the glitch, we first make a reconstruction of the CUR and NXT outputs of the 3
sets of blend filters (CPS, T240, and L-4C). We start with the 16 Hz epics data and resample it up
to 4096, with the matlab resample(channel, 4096, 16, 3) command. At the fast rate, we multiply it
by the fast ramps and add the ramped CUR and NXT signals together to estimate the inputs to
the Isolation filter. The 3 signals, and their sum, can be seen in figure 4. Figure 5 is a detail view
of those inputs at the first glitch. The thing to note is that the T240 signal has a sharp glitch in
it. This is largely due to the fact that the CUR blend filter is identically zero, since it is the ‘Blend
Start’ and the NXT filter has a large input, and hence a large output. This means that the shape
of the sum will look very much like the shape of the ramp.

4

−20 −18 −16 −14 −12 −10 −8 −6 −4 −2 0 2
−3

−2

−1

0

1

2

3

4
x 10

4 Reconstructed Inputs to the control filter

time (sec)

co
un

ts
 (

fil
te

re
d

nm
)

cr
ea

te
d

by
 p

lo
t_

gl
itc

h_
in

fo
 o

n
14

−
A

pr
−

20
14

CPS
T240
L4C
Total

Figure 4: Estimated inputs to the isolation filter coming from the blend filters.

−10.5 −10.4 −10.3 −10.2 −10.1 −10 −9.9 −9.8 −9.7 −9.6 −9.5
−4000

−3000

−2000

−1000

0

1000

2000

3000
Detail of the Reconstructed Inputs

time (sec)

co
un

ts
 (

fil
te

re
d

nm
)

cr
ea

te
d

by
 p

lo
t_

gl
itc

h_
in

fo
 o

n
14

−
A

pr
−

20
14

CPS
T240
L4C
Total

Figure 5: Detail of the estimated inputs to the isolation filter coming from the blend filters. Note
the kink in the T240 signal.

Using these estimated inputs to the isolation filters, we were able to simulate the output of the
drive chain. The measured output and the simulated output are reasonably close, as can be seen
in figure 6. The most interesting thing to see in the simulation is that if we just use the T240 input

5

to the isolation filter, and calculate what the output will be, we see that the glitch clearly remains.
This is good evidence that the glitch is, as we expect, coming mainly from the T240 part of the
blends. The simulated output using only the T240s after the glitch is clearly not correct, which is
what one would expect because the other sensors (mainly the CPS) are canceling the T240 signal
at low frequencies.

−12 −10 −8 −6 −4 −2 0

−5

0

5

x 10
4 H2 recorded drive

−12 −10 −8 −6 −4 −2 0

−5

0

5

x 10
4 H2 calcuted drive from slow chans and fast ramp

D
riv

e
si

gn
al

 a
t H

2
D

A
C

 (
co

un
ts

)

−12 −10 −8 −6 −4 −2 0

−5

0

5

x 10
4 Component of H2 drive from the T240 signal only

time (sec)

cr
ea

te
d

by
 p

lo
t_

gl
itc

h_
in

fo
 o

n
14

−
A

pr
−

20
14

Figure 6: Measured (top) and estimated (middle) outputs of the X to H2 drive path. Note the
glitches are very similar. The bottom trace shows the output of the filter chain if only the T240
signal is used. The glitch is nearly the same, indicating that most of the trouble is coming from
the T240 components of the blend switch (in this case, at least).

4 The P5 ramp

We have developed a smooth, fifth order polynomial ramp where the initial and final velocities and
accelerations are 0. This was developed for the bias restore function, and is called the P5 ramp. See

6

T1300510 for more information. We reran the simulation using that ramp to estimate the inputs
to the blend filters. The comparison between the linear ramps and the P5 ramps can be seen in
figure 7.

−12 −10 −8 −6 −4 −2 0 2

0

0.2

0.4

0.6

0.8

1

Old and new ramps in the simulation time

cr
ea

te
d

by
 p

lo
t_

gl
itc

h_
in

fo
 o

n
14

−
A

pr
−

20
14

linear CUR ramp
linear NXT ramp
P5 CUR ramp
P5 NXT ramp

Figure 7: The time history of the linear blend ramps (dashed line) and the new P5 ramps. The P5
ramps are much smoother.

Finally, we use the P5 ramps to simulate the input to the isolation filters during a blend switch.
This estimation is only accurate at the very beginning of the blend switch process because we are
not using a plant model. However, if we look at figure 8 what happens to the glitch in the output
of the H2 driver, in the one case using the T240 input with the linear ramp, and in the other using
the T240 input with the P5 ramp, it is clear that the P5 ramp eliminated the big glitch.

7

https://dcc.ligo.org/T1300510

−11 −10.8 −10.6 −10.4 −10.2 −10 −9.8 −9.6 −9.4 −9.2
0

1

2

3

4

5

6
x 10

4 Drive signal. Calculated ONLY using T240 input. Impact of ramp change

time (sec)

D
riv

e
in

 c
ou

nt
s

cr
ea

te
d

by
 p

lo
t_

gl
itc

h_
in

fo
 o

n
14

−
A

pr
−

20
14

P5 ramp
linear ramp

Figure 8: Simulated outputs of the control filter. The blue curve uses the linear ramp and makes
the big glitch seen earlier. Using the P5 ramp eliminates the glitch.

5 Implementation

We have implemented the P5 ramp into the blend switching code, and run it in the HAM-ISI model
at Stanford. The new code is called BLENDMASTER P5.c and replaces BLENDMASTER.c in
the {userapps}/trunk/isi/common/scr/ directory. There is no library part for the blend switching,
so each of the 18 modules (6 for HAM-ISI, 12 for BSC-ISI) need to be updated by hand. Once the
master models are updated, a simple rebuild of the chamber models will be adequate to effect the
change. There is no change visible to the user. One can watch the ...BLND X MIX epics variable
during a blend switch to confirm the ramp has been changed.

6 Implementation testing

The code was implemented in the ITMX model controlling the prototype at Stanford and used
to control a blend switch under circumstances meant to generate the glitches. Stage 1 RX and
RY loops were closed with level 3 style boosted controllers and X was controlled with level 3 style
non-boosted controllers. These loops started with the ‘blend-start’ controllers. The other stage 1
DOFs were damped, and the stage 2 DOFs were all damped. The RY bias was changed by 1000
nanoradians, and about 10 sec after the tilt command, the stage 1 X blend was changed from
‘Blend-start’ to the ‘HAMFET’ blend. This blend has a pretty low blend frequency and uses the
T240 signals. Note that the Stanford prototype uses STS-2 sensors rather the T-240s. Figure 9
shows the drive signal at the H2 DAC output (in counts). The top trace shows the drive with a
linear ramp in the blend switch. The large glitches at 0, 5, 10, and 15 seconds correspond to the
start and stop of the two ramps. The large, 10 sec period drive signal results from the attempt
to compensate for the large signals present on the T240 channels. The second plot shows a repeat

8

of the blend switch when the ramp has been changed from the linear ramp to the P5 polynomial
ramp. The glitches are not evident, but the 10 second motion is still quite clear.

−5 0 5 10 15

−4000

−2000

0

2000

4000

6000

8000

10000

12000
H2 drive with linear ramps

−5 0 5 10 15

−4000

−2000

0

2000

4000

6000

8000

10000

12000
H2 drive with P5 ramps

−5 0 5 10 15
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
x 10

5

time (sec), 0 ~ start of first ramp

Signal on the T240 X channel (S1:ISI−ITMX_ST1_BLND_T240X_IN1_DQ)

cr
ea

te
d

by
 B

T
L_

da
ta

_g
ra

b
on

 1
6−

A
pr

−
20

14

T240 during Linear Ramp
T240 during P5 Ramp

Figure 9: Measured drive to the H2 DAC during a blend switch for Stage 1 X after a large RY tilt.
The top trace shows the glitches from the linear ramp. The middle trace is a repeat of the exercise
using the new P5 ramp. The glitches are no longer evident, although the large drives with the 5
and 10 second time scales are about the same. The bottom trace shows the calibrated cartesian
basis T240 (STS-2 at Stanford) signals, which are quite large. The sensors are (falsely) reporting
average velocity of about 70,000 to 80,000 nm/sec at the start of the blend switch. This signal
comes from the 1000 nanoradian tilt imposed about 10 sec before the blend switch.

The actual ramp as implemented on the front-end and retrieved from the framebuilder is shown
in figure 10. It is smooth and asymptotes to 0.0 and 1.0 as it should. A detailed plot of the 4
corners is also shown in figure 11. The tops of the ramps are not as smooth as the bottoms. I
suspect this is the result of some numerical issue in C. The matlab version of the same calculation
is symmetric. This does not seem to cause any practical issue, but is noteworthy.

9

−2 0 2 4 6 8 10 12 14 16

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

mix value applied in the front end (from the framebuilder)

time (sec)

m
ix

 v
al

ue
 (

ap
pl

ie
d

to
 N

X
T

 fi
lte

r)

cr
ea

te
d

by
 B

T
L_

da
ta

_g
ra

b
on

 1
6−

A
pr

−
20

14

Figure 10: Measured P5 ramp set from S1:ISI-HAMX X MIX TP during a blend switch. The
shape is as expected.

−0.01 −0.005 0 0.005 0.01 0.015 0.02

0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

−7 detail of the ramp #1

4.985 4.99 4.995 5 5.005 5.01
−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

x 10
−7 detail of the ramp #2

9.99 9.995 10 10.005 10.01 10.015 10.02
−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

x 10
−7 detail of the ramp #3

14.98 14.985 14.99 14.995 15 15.005 15.01

0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

−7 detail of the ramp #4

cr
ea

te
d

by
 B

T
L_

da
ta

_g
ra

b
on

 1
6−

A
pr

−
20

14

Figure 11: Details of the 4 corners of the ramp in figure 10. The top edges are pixelated, and I
don’t understand why. The top edges are plotted as RampValue - 1 for display reasons.

10

7 New Source Code

Below is the listing of the source code found in {userapps}/trunk/isi/common/src/BLENDMASTER P5.c

/∗ BLENDMASTER. c Function : MASTERMIXBLENDS
∗
∗ This f unc t i on sw i t ch e s smoothly between two d i f f e r e n t b l end f i l t e r s . I t
∗ uses the NEXT bank o f f i l t e r s to sw i t ch to temporar i l y , then sw i t ch e s
∗ back to the o r i g i n a l f i l t e r . During t h i s swi tch , we use the c d sF i l t
∗ with c t r l to c on t r o l which f i l t e r modules are turned on . The input
∗ DESIRED FM i s t i e d to an EPICS momentary . I t i s used to determine
∗ whether the we shou ld sw i t ch − a sw i t ch i s i n i t i a t e d i f the curren t
∗ va lue f o r DESIRED FM > 0 . Once sw i t ch ing beg ins , the code i gnore s any
∗ changes to DESIRED FM.
∗
∗ We use a s t a t e machine a r c h i t e c t u r e to perform the sw i t ch ing . We turn
∗ on the reque s t ed FM in the second bank , wai t f o r i t to s e t t l e , ramp
∗ from the f i r s t to the second bank , sw i t ch the f i r s t bank to the
∗ r e que s t ed FM, wai t f o r i t to s e t t l e , and ramp back to the f i r s t bank .
∗
∗ Inputs :
∗
∗ i n t de s i r ed fm : the f i l t e r module the user wants to sw i t ch to
∗
∗ Outputs :
∗
∗ doub le mix va lue : the ramping v a r i a b l e [0−>1] used to combine the
∗ output from two b l ends
∗ i n t cu r c in b i tmask : the f i l t e r modules t h a t the C code wants on in the
∗ CURR bank
∗ i n t c u r c t r l b i tma s k : the CURR f i l t e r modules the C code c on t r o l s
∗ nx t c i n b i tmas k : the f i l t e r modules t h a t the C code wants on in the
∗ NEXT bank
∗ i n t n x t c t r l b i tma s k : the NEXT f i l t e r modules the C code c on t r o l s
∗ Blend ingS ta te c u r r e n t s t a t e : t y p ed e f ’ d enum va r i a b l e keep ing t rack o f
∗ our mixing s t a t e
∗
∗ Authors : CJK RK
∗ January 25 th 2012
∗
∗
∗/

#define FULL CONTROL 0b1111111111
#define NO CONTROL 0b0000000000

typedef enum { WAIT FOR FM SWITCH, WAIT FOR NEXT SETTLE, MIX TO NEXT,
WAIT FOR CUR SETTLE, MIX TO CUR } BlendingState ;

const stat ic int binary fm on [1 1] = {
0b0000000000 ,
0b0000000001 ,
0b0000000010 ,
0b0000000100 ,
0b0000001000 ,
0b0000010000 ,
0b0000100000 ,

11

0b0001000000 ,
0b0010000000 ,
0b0100000000 ,
0b1000000000 } ;

// BTL mods on Apr i l 14 , 2014 to use a P5 ramp .

const stat ic int TOTAL WAIT TIME = (5 ∗ FE RATE) ;

const stat ic int TRAMP = 5 ;
const stat ic int TOTAL MIX TIME = TRAMP ∗ FE RATE;
const stat ic double StartRampValue = 0 . 0 ;
const stat ic double FinalRampValue = 1 . 0 ;
const stat ic double WaitingOutput = 0 . 0 ; // mix va lue when ho l d ing − no s i g n a l

from NXT f i l t e r .
const stat ic double Xdi f f = FinalRampValue − StartRampValue ; // Tota l change f o r

the ramp
const stat ic double Vmax = (1 . 8 75) ∗ Xdi f f /TRAMP; // max v e l o c i t y , computed from

dX and dT

void MASTERMIXBLENDS(double ∗ argin , int nargin , double ∗argout , int nargout) {

stat ic int wai t t imer = 0 ; // Waiting f o r f i l t e r h i s t o r y to catch up
stat ic int mix timer = 0 ; // Switch between d i f f e r e n t f i l t e r s
stat ic int next fm = 1 ; // The f i l t e r module we are sw i t c h ing to
stat ic BlendingState c u r r e n t s t a t e = WAIT FOR FM SWITCH;
stat ic int cur c in b i tmask = 0b0 ;
stat ic int cu r c t r l b i tma sk = NO CONTROL;
stat ic int nxt c in b i tmask = 0b0 ;
stat ic int nx t c t r l b i tma sk = NO CONTROL;
stat ic double RpC [6] ; // the s e are the po lynomia l Ramp Coefs .

// The f i l t e r module we want to sw i t ch to (0 when no sw i t ch reque s t ed)
int des i r ed fm = arg in [0] ;

double t t ; // time from ramp s t a r t , but s c a l e d as −T/2 −> T/2.
double mix value ; // s t a r t a t 0 ;

// RpC are the Ramp Co e f f i c i e n t s
stat ic int s t a r t i n g = 1 ;

// p r e c a l c u l a t e the ramp coe f s .
i f (s t a r t i n g == 1) {

RpC[0] = StartRampValue + (0 . 5 ∗ Xdi f f) ;
RpC[1] = Vmax;
RpC[2] = 0 . 0 ;
RpC[3] = (−2.6666666666667/(TRAMP∗ TRAMP)) ∗ Vmax;
RpC[4] = 0 . 0 ;
RpC[5] = (3 . 2 0/ (TRAMP∗TRAMP∗TRAMP∗TRAMP)) ∗ Vmax;
s t a r t i n g = 0 ;

}

// STATE SWITCH
switch (c u r r e n t s t a t e) {
// STATE 0: Waiting f o r command , then turn on NEXT bank f i l t e r module
case WAIT FOR FM SWITCH:

12

i f (wa i t t imer == 0 && des i r ed fm > 0 && des i r ed fm < 11) {
next fm = des i r ed fm ;
nxt c in b i tmask = binary fm on [next fm] ;
nx t c t r l b i tma sk = FULL CONTROL;
// Don ’ t take con t r o l o f the CURR bank s ince we don ’ t know

what FM
// i t has loaded in
c u r r e n t s t a t e = WAIT FOR NEXT SETTLE;
++wai t t imer ;

} else {
cu r c t r l b i tma sk = NO CONTROL; // back to wai t ing , g i v e up

con t r o l
nx t c t r l b i tma sk = NO CONTROL;

}
break ;

//STATE 1: Waiting f o r NEXT bank h i s t o r y to s e t t l e
case WAIT FOR NEXT SETTLE:

i f (wa i t t imer < TOTAL WAIT TIME) {
++wai t t imer ;

} else {
c u r r e n t s t a t e = MIX TO NEXT;

}
break ;

//STATE 2: Ramping to NEXT bank , then sw i t ch CURR bank to reque s t ed FM
case MIX TO NEXT:

i f (mix timer < TOTAL MIX TIME) {
++mix timer ;

} else {
cu r c t r l b i tma sk = FULL CONTROL;
cur c in b i tmask = binary fm on [next fm] ;
c u r r e n t s t a t e = WAIT FOR CUR SETTLE;

}
break ;

//STATE 3: Waiting f o r CURR bank h i s t o r y to s e t t l e
case WAIT FOR CUR SETTLE:

i f (wa i t t imer > 0) {
−−wai t t imer ;

} else {
c u r r e n t s t a t e = MIX TO CUR;

}
break ;

//STATE 4: Ramping back to CURR bank , then sw i t ch a l l NEXT bank FMs o f f
case MIX TO CUR:

i f (mix timer > 0) {
−−mix timer ;

} else {
nxt c in b i tmask = binary fm on [0] ;
c u r r e n t s t a t e = WAIT FOR FM SWITCH;

}
break ;

}
// The we i gh t ing g iven to the CURR and NEXT outpu t s ((1−x)∗CURR + x∗NEXT)
// so the ramp w i l l s t a r t a t 0 and go to 1 , ho ld at 1 , then ramp back down

to 0 .
// the RampCoef are pre−ca l cu l a t e d , as d e s c r i b ed in T1300128

i f (c u r r e n t s t a t e == WAIT FOR FM SWITCH) {
mix value = WaitingOutput ;

}

13

else i f (c u r r e n t s t a t e == WAIT FOR NEXT SETTLE) {
mix value = StartRampValue ;

}
else i f ((c u r r e n t s t a t e == MIX TO NEXT) | | (c u r r e n t s t a t e == MIX TO CUR)) {

t t = (2 . 0 ∗ mix timer) − TOTAL MIX TIME;
t t = (0 . 5 ∗ t t) / (1 . 0 ∗ FE RATE) ; // ca s t to doub le b e f o r e the

d i v i d e
// RC[5] ∗ t t ˆ5 + RC[4] ∗ t t ˆ4 + . . . RC[0]
mix value = ((((RpC[5] ∗ t t + RpC[4]) ∗ t t + RpC[3]) ∗ t t + RpC[2]) ∗ t t +

RpC[1]) ∗ t t + RpC [0] ;
}
else i f (c u r r e n t s t a t e == WAIT FOR CUR SETTLE) {

mix value = FinalRampValue ;
}
else {

// t h i s shou ld never happen
mix value = WaitingOutput ;

}

argout [0] = mix value ;
// The f i l t e r modules t h a t the C code wants on in the CURR bank
argout [1] = cur c in b i tmask ;
// The f i l t e r modules the C code has con t r o l o f in the CURR bank
argout [2] = cu r c t r l b i tma sk ;
argout [3] = nxt c in b i tmask ;
argout [4] = nx t c t r l b i tma sk ;
// Output the i n t va lue o f the curren t s t a t e
argout [5] = cu r r e n t s t a t e ;

}

14

	Summary
	Problem Discussion
	Problem Simulation
	The P5 ramp
	Implementation
	Implementation testing
	New Source Code

