ESD Force Noise and Range for Various Modes of Operation

Brett Shapiro G1400537

Assumptions – Following T1200479-v2

Bias channel is low passed, so has negligible noise

 Control channel voltage noise is independent of drive amplitude

All ESD quadrants have the same force range

3 Possible Modes of Operation

- Maximum range Bias voltage at maximum.
 Use an offset on the control voltage to get symmetric bipolar force range.
- 2. Reduced bias same as max range mode, but with a smaller bias to reduce noise.
- No control voltage offset the control voltage offset is turned off to reduce noise.
 Bias is at maximum.

Maximum Range Mode - range

$$F = \alpha (V_b - V_s)^2$$
 ESD force

if
$$V_s = -V_b$$

$$F_{\text{max}} = \alpha (V_b + V_b)^2$$
 Max force for a voltage limit of V_b

$$F_{\text{max}} = 4\alpha V_b^2$$

To get bipolar actuation, we typically set DC force of half the maximum range

$$F = F_{dc} + F_{ac}$$
 Splitting the force into DC an AC parts

$$F_{dc} = \frac{1}{2}F_{\text{max}} = 2\alpha V_b^2$$
 realized with $V_{s,dc} = (1 - \sqrt{2})V_b$

$$|F_{ac}| \le \frac{1}{2} F_{\text{max}} = 2\alpha V_b^2$$
 AC force range

if
$$V_b = V_{b,\text{max}}$$
 $|F_{ac}|$

$$|F_{ac}| \le \frac{1}{2} F_{\text{max}} = 2\alpha V_{b,\text{max}}^2$$

Maximum Range Mode - noise

recall

$$F = \alpha (V_b - V_s)^2$$
 ESD force

expanding

$$F = \alpha \left[V_b^2 - 2V_b V_s + V_s^2 \right]$$

Splitting the signal voltage into a control part and noise part

$$V_{s} = V_{c} + v_{n}$$

Plugging this back in

$$F = \alpha \left[V_b^2 - 2V_b (V_c + v_n) + (V_c^2 + 2V_c v_n + v_n^2) \right]$$

And simplifying

$$F = \alpha \left[V_b^2 - 2V_b V_c + V_c^2 - 2V_b v_n + 2V_c v_n + v_n^2 \right]$$
assume $v_n^2 \approx 0$

$$F = \alpha \left(V_b^2 - 2V_b V_c + V_c^2 \right) + 2\alpha \left(V_c - V_b \right) v_n$$

$$F_n = 2\alpha (V_c - V_b) v_n$$

This is the general solution for force noise

Maximum Range Mode - noise

Splitting the control voltage into a DC part and AC part

$$V_c = V_{c,dc} + V_{c,ac}$$

$$V_{c,dc} = \left(1 - \sqrt{2}\right)V_b$$
 As before, for the half max force offset recall

$$F_n = 2\alpha (V_c - V_b) v_n$$
 and $V_b = V_{b,\text{max}}$

The average force noise amplitude is found setting $V_{cac} = 0$

$$F_{n,ave} = 2\sqrt{2}\alpha V_{b,\max} v_n$$

 $F_{n,ave} = 2\sqrt{2}\alpha V_{b,\max}v_n$ Note, this is a factor root 2 greater than in T1200479-v2, due to the inclusion of the V_c term.

This is the expected noise if the AC voltage is much less than the bias

If not, the maximum force noise amplitude is found setting $V_c = -V_{b,\mathrm{max}}$

$$F_{n,\text{max}} = 4\alpha V_{b,\text{max}} v_n$$

Reduced Bias Mode

Reuse the range equation from the full range mode, but with smaller bias voltage

$$\left| F_{ac} \right| \le 2\alpha V_b^2$$

This assumes we enforce symmetric saturation (control could go to max, even if bias doesn't, but we assume the control stays within the bias).

For example,

if
$$V_b = \frac{1}{\sqrt{2}} V_{b,\text{max}}$$
 then

$$|F_{ac}| \le \alpha V_{b,\text{max}}^2$$

 $|F_{ac}| \le \alpha V_{b,\text{max}}^2$ Which is half the range of the full range mode

Reuse the noise equation from the full range mode, but reduce the bias

$$F_{n,ave} = 2\sqrt{2}\alpha V_b v_n$$
 and $F_{n,max} = 4\alpha V_b v_n$

$$F_{n,\text{max}} = 4\alpha V_b v_n$$

For example,

if
$$V_b = \frac{1}{\sqrt{2}} V_{b,\text{max}}$$
 then

$$F_{n,ave} = 2\alpha V_{b,\max} v_n$$

$$F_{n,ave} = 2\alpha V_{b,\max} v_n$$
 and $F_{n,\max} = 2\sqrt{2\alpha} V_{b,\max} v_n$

Which is root 2 less than the full range mode

No Control Voltage Offset Mode

Range

 $V_c = V_{c,dc} + V_{c,ac}$ As before, split the control voltage into a DC part and AC part Set the DC part to 0

$$V_{c,dc} = 0$$

$$F_{dc} = \alpha V_{b,\text{max}}^2$$

The DC force is now half what it was in max range mode, assuming max bias

The AC range is then (since the total force can go from 0 to $4\alpha V_h^2$)

$$-\alpha V_{b,\text{max}} \le F_{ac} \le 3\alpha V_{b,\text{max}}^2$$
 for symmetric saturation

$$|F_{ac}| \le \alpha V_{b,\text{max}}^2$$

Noise

$$F_n = 2\alpha (V_c - V_b) v_n$$

$$F_{n,ave} = 2\alpha V_{b,\max} v_n$$

$$F_{n,\max} = 2\sqrt{2}\alpha V_{b,\max} v_n$$

The symmetric range is half the max range mode, and the same as dropping the bias by root 2 in reduced bias mode.

Recall the general solution for force noise

This noise is root 2 less than the max range mode, and the same as dropping the bias by root 2 in reduced bias mode.

For symmetric range, where max force comes from $V_c = (1 - \sqrt{2})V_b$

Conclusions

- We can reduce the noise of the ESD by operating it out of the typical full range mode, at the expense of reduced force range.
- The mode where the DC control voltage is set to zero is equivalent to reducing the bias voltage by sqrt(2) in the reduced bias mode.
- According to this modeling, adding extra infrastructure to the ESD simulink diagram to remove the DC control voltage is not needed. Just reduce the bias voltage instead.