Impressions of CARM/ALS

J. Kissel, for the people way smarter than me.

Primer

The development of CARM/ALS spans many decades, many people, and many subsystems, so documentation isn't always consistent and it's tough to find the big picture with everything included in one place. This is my attempt.

- I'm *still* getting to know the subsystem
- This presentation will not be perfect
- Go to references (Related Documents on DCC file card) for further reading, they've done a better job at some of the details.
- This is now a "course" meant to be taught over a few days, so forgive its length

Thanks for your patience.

Intro to Cavity "Locking"

Locks laser frequency to resonant cavity, following the length of the cavity as it changes

Robert V. Pound Ron W P Drever John L Hall

Control servo holds the laser frequency within linear operating regime

Intro to PDH

Filter "Demodulator"
"Lock acquisition" or "catch (and hold) lock"
= Length changes slower than the control bandwidth

Intro to PDH
 Phase /

$$
\Delta f=\frac{\lambda}{c L} \Delta L \quad \frac{\Delta L}{L}=\frac{\Delta f}{f}
$$

See Appendix A for more Essential Cavity Eqs.

The LONGER the cavity, and/or the SMALLER the length changes, the better the frequency reference, the lower the frequency noise

The LIGO Arm Cavity Problem

Laser frequency = 3 [THz] = 3e14 [Hz] Standard Nd:YAG laser frequency noise at $\sim 10-100 \mathrm{~Hz}=1 \mathrm{e} 4[\mathrm{~Hz} / \mathrm{rtHz}]$

Highly reflective mirrors Long light storage time High finesse

Great for gravitational wave detection
aLIGO Needs frequency stabilization at $\sim 10-100 \mathrm{~Hz}=1 \mathrm{e}-6[\mathrm{~Hz} / \mathrm{rtHz}]$ level!
(in loop)
Highly reflective mirrors
Very small / tight cavity line width:
FWHM $\approx 100[\mathrm{~Hz}] \approx 1[\mathrm{~nm}]$

Needs 10 orders of magnitude of frequency noise suppression!

In order to merge corner station with arms during lock acquisition, while building up frequency stability, we need *LOTS* of loops.

LIGO = PDH to the MAX

Frequency Actuators on Light AOMs vs. EOMs

Acousto-Optic Modulator

- Bragg Crystal acoustically excited by PZT
- Diffraction light frequency is Doppler shifted to

$$
f->f+m F
$$

where m is the diffraction order and F is excitation frequency

$$
m=+2
$$

Acoustic
Absorber

Quartz
Piezo-electric $-\mathrm{m}=+1$
Transducer

Electro-Optic Modulator

- Creates sidebands via phase modulation via Pockels effect
- Refractive index is a function of the electric field
- Output phase proportional to how much time in crystal
- Change electric field, change refractive index, change the phase of light.

$$
\begin{aligned}
A \mathrm{e}^{i w t} & >A \mathrm{e}^{i w t+i \Gamma \sin (W t)} \\
& \sim A e^{i w t}(1+i \Gamma \sin (W t)+\ldots)(\text { for small } \Gamma) \\
& \sin (x)=(1 / 2 i) \mathrm{e}^{+i x}-\mathrm{e}^{-i x} \\
& =A \mathrm{e}^{i w t}\left(1+\Gamma / 2 \mathrm{e}^{+i W t}-\Gamma / 2 \mathrm{e}^{-i w t}+\ldots\right) \\
& =A\left(e^{i w t}+\Gamma / 2 \mathrm{e}^{+i(w+w) t}-\Gamma / 2 \mathrm{e}^{+i(w-w) t}+\ldots\right)_{8}
\end{aligned}
$$

FSS

Frequency Stabilization Servo

Just a fancy PDH loop!

Light sent into Reference Cavity serving as an external frequency reference

- $\mathrm{L} \approx 0.5$ [m]
- In a vacuum can on the PSL

Photo-diode demodulated at 21.5 [MHz], low passed, and control filtered, and sent to laser
Low Frequency = "Slow" = laser temperature High Frequency = "Fast" = Laser cavity length

- EOM adds 21.5 MHz sidebands for PDH locking the laser to the reference cavity
- AOM shifts the picked-off laser frequency up by +80 upon first pass and then another +80 upon second
- Voltage-Controlled Oscillator (VCO) provides adjustable local oscillator (LO) frequency at 80 +/- 1 [MHz], so we can adjust the main PSL carrier frequency. scillator (LO) frequency at 80
\square
71 MHz

FSS

IMC PDH Fiber PLL ALS PDH ALS COMM ALS DIFF

Input Mode Cleaner PDH

Just a fancy PDH loop!

(but now nested with FSS)
Now $16[\mathrm{~m}]$, suspended input
mode cleaner cavity serves as
frequency reference
EOM for IMC
oscillator is set at 24
$[\mathrm{MHz}]$

PSL / End-Station

MEANWHILE!!! Begin to prep the arms for merging with the red...

- Take the *transmitted* light from Reference Cavity,
- feed it into a optical fiber (on the PSL),
- down-shift back to 0 [MHz] with fiber AOM (in the PSL racks)
- Ship to end stations (via optical fiber),
- Phase lock the carrier of an independent, RED / GREEN auxiliary laser to PSL fiber transmission
- Catch PSL / Aux RED beat note on PD, a send to a phasefrequency detector as the mixer, demodulate at $\sim 40[\mathrm{~Hz}]$ with VCO
- Laser / PLL forces aux laser to have a RED, 1064nm carrier $+/-40[\mathrm{MHz}]$, therefore GREEN, 532 nm carrier $+/-$ 80 [MHz] in GREEN

- - for X arm, + for Y arm

4π

IMCPDH
Fiber PLL ALS PDH ALS COMM

Just a fancy PDH loop!
(Now nested with Fiber PLL)

Now back to standard PDH locking of arm with green

Send fast feed back to end-VCO
... just like IMC
Send slow feed back to arm cavity length
Arm Length Stabilization PDH

\qquad

Fiber PLL ALS PDH ALS COMM ALS DIFF FIND IR IR FOUND

PSL / Common Arm Stabilization

Now we nest the green and red frequency, starting to sync the PSL to the arms.

- Transmitted green from X arm is steered to combine with a pick-off of the PSL, frequency-doubled (turning RED to GREEN) via second harmonic generator (SHG).
- That beat note ($-80[\mathrm{MHz}]$), is fed into another PLL / VCO combination
- The control signal is fed into a summing node, which cascades down to the IMC, then to the PSL (or IMC)

ALS PDH ALS COMM

 ALS DIFFFIND IR
IR FOUND
ARMS OFF REZ

Now compare the X arm transmitted green light against the Y arm, using the beat note (160 [MHz]) as the first sensitive measure of DARM

Differential Arm Length Stabilization

The Rest of the Lock Acquisition Sequence

- From here, we have the arms controlled, but at this point the frequency control is no where near good enough, and we don't have DRMI locked.
- The next MANY steps are all in place such that we can lock DRMI independently, then slowly bring the arms into resonance with DRMI.
- It's a convoluted process that involves slowly/carefully switching between equivalent sensors and actuators, but going from high noise / high range to low noise / low range.
Let's go!

ALS COMM

FIND IR

FIND IR

IRFOUND
ARMS OFF REZ
DRMI

Steer around COMM then DIFF frequency control (via slow digital control of COMM then DIFF VCO frequencies, which in turn pushes around the PSL frequency), to find

ALS DIF

IR FOUND

IR FOUND

ARMS OFF REZ
DRMI
CARM ON TR CARM ON TR

FIND IR

ARMS OFF RESONANCE

ARMS OFF REZ
DRMI (ARM ON TR
[)ARM TO RF

add an OFFSET to the ALS DIFF and COMM loops to push the arms off resonance, so we can lock DRMI without the interference of the arms

IR FOUND

IR FOUND ARMS OFF REZ DRMI CARM ON TR DARM TO RF CARM TO REFL

An aside: Why $1 f$ vs $3 f$ DRMI?

I lied to you a bit on slide 8 when I said

$$
\begin{aligned}
A e^{i w t} & ->A e^{i w t+i} \Gamma \sin (W t) \\
& \sim A e^{i w t}(1+i \Gamma \sin (W t)+\ldots)(\text { for small } \Gamma) \\
& \sin (x)=(1 / 2 i) e^{+i x}-e^{-i x} \\
& =A e^{i w t}\left(1+\Gamma / 2 e^{+i W t}-\Gamma / 2 e^{-i W t}\right) \\
& =A\left(e^{i w t}+\Gamma / 2 e^{+i(w+w) t}-\Gamma / 2 e^{+i(w-w) t}\right)
\end{aligned}
$$

To be more complete...

$$
\begin{aligned}
& A e^{i \omega t}->A e^{i \omega t+i \Gamma \sin (W t)} \\
& =A \mathrm{e}^{\mathrm{i} \omega t} \Sigma_{\mathrm{k}}\left[\mathrm{~J}_{\mathrm{k}}(\Gamma) \mathrm{e}^{\mathrm{ikWt}}\right] \\
& J_{k}(\Gamma) \sim 1 / k!(\Gamma / 2)^{k} \quad \text { (for small } \Gamma \text {) } \\
& J_{-k}(\Gamma)=-J_{k}(\Gamma) \\
& =A e^{i \omega t}\left(\ldots-\Gamma / 6 e^{-i 3 W t}-\Gamma / 4 e^{-i 2 W t}-\Gamma / 2 e^{-i W t}\right. \\
& +1 \\
& \left.+\Gamma / 2 \mathrm{e}^{+i W t}+\Gamma / 4 \mathrm{e}^{-\mathrm{i} 2 W t}+\Gamma / 6 \mathrm{e}^{-\mathrm{i} 3 W t}+\ldots\right)
\end{aligned}
$$

... one modulation frequency yields lots of harmonics:

And that's the electric field.
Photodetectors measure power ($=\mid$ field $\left.\right|^{2}$), so there will be cross-terms as well...
$9,(2 * 9)=18,(2 * 9-45)=27,(9-45)=36,45$, etc.

- $9 \mathrm{MHz}-45 \mathrm{MHz}$

The RF response of our LSC photodetectors

IR FOUND
ARMS OFF REZ DRMI
CARM ON TR DARM TO RF CARM TO REFL

An aside: Why $1 f$ vs $3 f$ DRMI?

IR FOUND

ARMS OFF REZ DRMI
CARM ON TR
DARM TO RF CARM TO REFL

ARMS OFF REZ

CARM ON TR

CARM ON TRANSMISSION

DRMI

CARM ON TR

DARM to RF

DARM TO RF
CARM TO REFL
RESONANCE
DRMI ON POP

OK, this talk admittedly ignores the anti-symmetric port (DARM, MICH, and SRCL) but there's an in-air RFPD there (AS AIR) that can be used to measure DARM with IR, digitized PDH scheme that's more sensitive, so we switch from DIFF to RF DARM here.

4 km

\qquad

CARM ON TR

CARM to REFL

CARM TO REFL

RESONANCE
[)RMI ON POP
FARK ALS VCO

While we continue to reduce the CARM offset, we switch CARM control from the combo of arm transmissions to a digitized RF PDH scheme with an in-air RFPD at the REFL port ETMY

still not good enough frequency noise, though...

DARM TO RF

RESONANCE

RESONANCE

DRMI ON POP

DARM TO RF

 CARM TO REFL
DRMI ON POP

DARM TO RF
CARM TO REFL RESONANCE DRMI ON POP

No thank you!

DARM TO RF

CARM TO REFL

SHUTTER ALS

DRMI ON POP PARK ALS VCO
SHUTTER ALS

Now You Understand this Diagram

The Nested Loop Topology for Frequency Stabilization from Evan Halls hesis 1 1.60295

The Nested Loop Open Loop Gain TFs

From Evan Hall's Thesis P1600295

CARM OLG TF

$x 1 e 3$ at 100 Hz

IMC OLG TF

$x 1 e 4$ at 100 Hz

FSS OLG TF

$x 1 e 3$ at 100 Hz
$=10$ orders of magnitude 100 Hz

Appendix to PDH
 (Essential Cavity Equations)

Cavity Resonance Condition

Integer Number of Wavelengths fit inside length of the cavity

$$
k L=N \pi
$$

Free Spectral Range (distance / frequency spacing between resonances)

Phase <-> Length <-> Frequency

$$
\begin{gathered}
\phi=\frac{4 \pi}{c} L f \\
\frac{\Delta L}{L}=\frac{\Delta f}{f} \\
\Delta L=\frac{L \lambda}{c} \Delta f \\
\begin{array}{l}
* * \text { Check out } \\
\begin{array}{l}
\text { P010013 for why } \\
\text { this is an } \\
\text { approximation }
\end{array}
\end{array} .
\end{gathered}
$$

Cavity Finesse

$$
\mathcal{F}=\frac{F S R}{F W H M}=\frac{\pi}{2 \arcsin \left(\frac{1-r_{1} r_{2}}{2 \sqrt{r_{1} r_{2}}}\right)} \approx \frac{\pi \sqrt{r_{1} r_{2}}}{1-r_{1} r_{2}} \approx \frac{\pi}{1-r_{1} r_{2}} \quad \text { (dimensionless) }
$$

G1400519-v3 As mirror reflectivities go up, cavity Finesse, \mathcal{F}, goes up, Linewidth gets smaller

