LIGO

A Preview of Future Cryogenic Suspensions for aLIGO Upgrades

Brett Shapiro Stanford cryo people: Brian Lantz, Tim MacDonald, Dakota Madden-Fong (summer '13)

G1400475 – 29 April 2014 – Caltech

Summary

- Moving from Advanced LIGO to LIGO III
- LIGO III quad suspension design
- Steady state cooling (science mode)
 - System layout

LIGO

- Length of heat shield extending into beam tube
- Initial Cool down
 - Stanford initial cool down experiments
- Future work

Advanced LIGO Timeline

Livingston, LA

Hanford, WA

LIGO Predicted Advanced LIGO Sensitivity

G1400475 – 29 April 2014 – Caltech

LIGO Predicted Advanced LIGO Sensitivity

G1400475 – 29 April 2014 – Caltech

Predicted Advanced LIGO Sensitivity

LIGO III cryo work distribution

- Caltech cryogenic reference cavities; direct thermal noise measurements
- Jena/Glasgow/Moscow mechanical loss
- MIT high emissivity coatings
- KAGRA 20 K sapphire suspensions
- INPE Brazil Cryogenic multi-nested pendulum
- Stanford optical coatings; cryogenic technology

Courtesy of Nicolas Smith

Ligo Cyro Test Mass Problem Statement

* For LIGO III, reduce suspension and coating thermal noise by cooling the lower quad to 124 K (-149.15 C)

- Si test masses (blue team in LIGO-T1200031)
- 2 cooling regimes:
 - Initial cool down get to 124 K quickly <- Stanford experiment</p>
 - Steady state maintain 124 K once you get there
- Include a warm-up scheme (don't forget!)
- Use the same seismic isolation platforms (ISIs, HEPIs)
 - Limit the amount of extra weight on these plaforms
 - Leave the rest of the vacuum chamber warm
- Do not increase the test mass lossiness
 - Emissive coatings, heat links, thick sus fibers, optical coatings, substrate, suspension fiber bonding, etc
- Do not compromise passive seismic isolation
 - Cables, hoses, links, etc

Quad Suspension Design

Must incorporate much larger test mass

LIGO III Quad Suspension Design

Adapted from G1200828, courtesy of Madeleine Waller, Norna Robertson, Calum Torrie

LIGO Quad Design Requirements

Ligo Quad Design Requirements

z ₄g

►X⊣

►Xم

××3

►xg

Payload $P \leq 270$ kg for the main chain for aLIGO BSC-ISI L_{1}, k_{1} **Z**1 m. L_2, k_2 Z2 m₂ L₃, k₄ z₃ m₃ z_4 L_{4}, k_{4} m_4

LIGO Quad Design Requirements

z_g Payload $P \leq 270$ kg for the main chain for aLIGO BSC-ISI L_{1}, k_{1} Z4 m. ⊦X⊾ L_2, k_2 Zo m₂ L₃, k₄ ZR m₃ ►X³ L_4, k_4 Test mass $m_4 \approx 143 \text{ kg}$ to minimize m₄ radiation pressure and thermal noise

►xg

Ligo Quad Design Requirements

3 Optimal Quad Designs

		Higher payload	Lighter Test mass	PUM Si springs	
	Table 3: Summary of model parameters for the three proposed modifications.				
za	Parameters	Increased P	Decreased m_4	Penultimate Springs	
¥9 ≻x	P, Payload (kg)	301.9	270.0	270.0	
y z,	$m_1 \ (\mathrm{kg})$	46.79	41.93	51.55	
	$m_2 \ (\mathrm{kg})$	39.54	35.42	41.71	
~1	$m_3 \ (\mathrm{kg})$	72.57	64.86	33.74	
zo	$m_4 \ (\mathrm{kg})$	143.0	127.8	143.0	
mo -xo	L_1 (m)	0.372	0.372	0.535	
	L_2 (m)	0.372	0.372	0.535	
z ₃	L_3 (m)	0.372	0.372	0.535	
$m_3 \xrightarrow{\uparrow} x_3$	L_4 (m)	1.025	1.025	0.535	
z ₄	10Hz long. isolation (m/m)	1.1×10^{-7}	1.1×10^{-7}	7.9×10^{-8}	
×,	f_{bounce} (Hz)	9.27	9.27	low, depends on springs	
m ₄	σ_4 , fiber stress (Mpa)	1400	1400	1400	
	E_4 , fiber modulus (Gpa) [6]	167.4	167.4	167.4	
	noise budget impact	none	slightly worse	better	
	relative cost	high	low	high	

Note: these results are highly dependent on the allowed Si fiber stress, σ_4 . There is still much uncertainty in this value.

See T1300786

LIGO

 $L_{1}^{}, k_{1}^{}$

 L_{2}^{k}, k_{2}^{k}

L₃, k₄

 $L_{4}^{}, k_{4}^{}$

LIGO All designs permit top mass damping

11/38

Steady State Cooling

Keeping the test mass temperature at the operating point

LIGO III Steady State Cooling

See also G1200246-v1

LIGO

Pros and Cons of LN₂ pipe vs. Cu cable

Cu cable

Pros:

- No fluid to make noise
- No LN₂ pumping mechanism
- No risk of N_2 leaks

Cons:

- Low heat transfer
- •

LN₂ pipe

Pros:

- High heat transfer
- No length / heat transfer trade-off
- Low weight

•

Cons:

- Risk of leaking
- Fluid flow could contribute noise
- •

Pros and Cons of LN₂ pipe vs. Cu cable

Cu cable

Pros:

- No fluid to make noise
- No LN₂ pumping mechanism
- No risk of N_2 leaks

Cons:

- Low heat transfer
- Cryo refrigerator must be placed near feedthrough
- High bulk: stiffness, weight, etc
 - Q = K(A/L)ΔT
 - 1. Big L means big A
 - Can reduce A by making cold end less than LN₂ (77 K). E.g. Cryomech's PT407 can pull 25W at 55 K.
 - Minimize stiffness by using lots of this wires, but wire dia must be > electron m.f.p.
- Thermal conductivity decreases when wire dia becomes smaller than electron m.f.p.
- Hysteresis
 - Lots of small wires sliding past each other
- High difficulty in minimizing seismic shorting
 - Minimize using:
 - 1. Lots of thin wires
 - 2. Intermediate masses along length

LN_2 pipe

Pros:

- High heat transfer
- Low bulk
- Moderate difficulty in minimizing seismic shorting
- Length of pipe in vacuum not an issue for net heat transfer (longer pipes do require more pressure to push fluid)
- Vibrating cryorefrigerator can be placed further from vacuum feedthrough.

Cons:

- Complex LN₂ pumping mechanism
- Risk of leaking
- Fluid flow could contribute noise
 - Minimize by:
 - 1. Cooling the LN₂ so it doesn't boil
 - 2. Ensuring laminar flow
- Pressure of flow and thermal contraction can influence table displacement
 - Minimize by locating pipes in strategic locations

Beam Tube Heat Shield Length

Ligo Beam Tube Heat Shield Length

End Station Vacuum System

LIGO

Initial Cooldown

Acquiring the operating temperature

A Lot of Heat to Remove

* Radiation to the heat shield alone would take \approx 2 weeks.

LIGO

Initial Cool Down Cold Link – 2 Designs

Conductive cooling, low pressure N ₂ gas	Pros and Cons		
liquid N ₂ pipe flexures	 Pros Operates in partial vacuum. Low heat transfer between cold and warm parts of vacuum system. Fine temperature control – just back away when at desired temperature Versatility, design permits both conductive and convective cooling. 		
Test mass thermally conductive plate with variable gap	 Cons Requires moving parts: flexible pipes actuators Physically contacts barrel of test mass 		

Initial Cool Down Cold Link – 2 Designs

Pros and Cons	Convective cooling, up to 1 atm N ₂ gas		
 Pros No moving parts or actuators No contact with test mass Faster cooling than conduction Cons Convection between cold and warm parts of vacuum system No fine temperature control – must return to vacuum to 'turn off' cold link. Does not operate under vacuum 	return liquid N ₂ supply convective N2 gas Test mass thermally conductive plate with large fixed gap		

Experimental Setup

Threaded rod cold link height adjuster

Test mass holder

Close up of cold link

LIGO

Flexible cold link evolution

LIGO

LIGO Measurement – cold link engaged

Silicon Test Mass Cooling - 24 February 2014

Test mass temperature modeling

27/38
LIGO Test mass temperature modeling

27/38

Silicon Test Mass Cooling with Cold Link

Test mass temperature modeling

Test mass temperature modeling

 K_{CL} = thermal conductance of cold link C_{Si} = heat capacity of silicon

- These are both functions of temperature.
- In general, the solution is not truly exponential since the time 'constant' changes.

Ligo Measurement – cold link disengaged

Ligo Measurement – cold link disengaged

Ligo Conductive vs Convective Regimes

Finite Element Modeling

- Due to complexity, LIGO III designs must be verified with modeling or FEM
- Below: FEM of conduction through N₂ gas to cold link for Stanford experiment

 \approx 43 min into cool down

• Convective FEM is proving to require large amounts of computing power

LIGO

Ligo Cold link on a LIGO III test mass

Stanford Next Gen Experiment

Ligo Stanford Next Gen Experiment Layout

LIGO Future work

Next generation experiment using the Stanford ETF (experimental test facility)

- More realistic LIGO setup
- Measure temperature drifts on LIGO hardware, e.g. blade springs
- Measure seismic noise of nitrogen delivery and/or copper cables
- Test heat shield design
 - Black coatings
 - baffles
- Test a variety of cooling techniques
- System integration: how to make all this stuff work together
- Implement in stages
 - Cables/hoses first test seismic noise
 - Heat shield and suspended optic
 - Install cryogenic refrigerator
 - Cavity?
 - Anything we haven't thought of yet

LVC STANFORD August 25-29 2014

Hillon

LVC STANFORD August 25-29 2014

Accommodations

Carothers Hall

(30) Single Rooms: \$77.20 per person/night(85) Double Rooms: \$56.70 per person/night

Benefits:

- 5 minute walk to conference.
- Outdoor facilities available:
- Telephone in each
- Comfortable and clean facility.
- Onsite management.
- Free laundry facilities.
- Linens provided
- Quiet areas including business center/lounge.
- Crothers Hall is exclusive to LVC.
- Free shuttle service to shopping/restaurants

Alternate accommodations (hotel) \$180-350/night

Registration – webpage coming soon

\$250 Student rate \$500 Non-student rate

Includes:

- Breakfast and lunch
 - Banquet dinner
- Conference rooms
- AV and AV Technicians
 - Poster session

Does not include:

- Parking passes (\$10/day)
- Transportation to/from airport
 - Poster printing

Contact Claudette Earl cearl@stanford.edu

Backups

Ligo Test Mass in Next Gen Prototype

Experimentation lessons learned

- Air dominates most heat flow across contacts
- Cold links should have distributed contacts
- Solder is not leak tight against high pressure cryogenic fluids – welding is probably best
- Cryogenic fluid should have 1 flow path
- Send fluid from bottom up

LIGO

- Use fatter pipes to minimize fluid pressure
- Minimize the number of materials in the plumbing joining and contraction issues
- Leave room for differential contraction
- Silicon diode temperature sensors are great

Steady State LN₂ flow rate

What flow rate do we need to maintain the shield at about \approx 80 K?

Liquid nitrogen parameters $C_p = 2041 \text{ J/kg} \cdot \text{K}$ at boiling $\rho = 806.1 \text{ kg/m}^3$ $Q_m = \text{ mass flow rate in kg/s}$ $Q_v = Q_m / \rho = \text{volumetric flow rate in m}^3 / \text{s}$ $1 \text{ m}^3 = 1000 \text{ liter}$

Heat load in shield P = 10 W $H_L = P / L \text{ [W/m]}$

Velocity of fluid element for a given flow rate

$$v = \frac{Q_v}{\pi r^2} = \frac{Q_m}{\rho \pi r^2} \text{ [m/s]}$$

Time it takes fluid element to travel pipe

$$t = L / v = \frac{L\rho\pi r^2}{Q_m} \text{ [s]}$$

Mass of fluid disk-element

$$dm = \rho \pi r^2 dx$$
 [kg]

Heat capacity of fluid element

 $C_p dm = C_p \rho \pi r^2 dx [J/K]$

Power into fluid element

$$H_L dx = \frac{P}{L} dx$$
 [W]

Total heat energy into fluid element for time in pipe

$$H_L t dx = \frac{P\rho\pi r^2}{Q_m} dx \ [J]$$

Temperature rise in fluid

$$\Delta T = \frac{H_L t dx}{C_p dm} = \frac{P}{\rho C_p Q_v}$$
[K]

Volumetric flow rate

$$Q_v = \frac{H_L t dx}{C_p dm} = \frac{10^6 P}{\rho C_p \Delta T} \text{ [ml/s]}$$

if we allow for

 $\Delta T = 10 \text{ K}, P = 10 \text{ W}$

then,

$$Q_v = \frac{10^6(10)}{806.1(2041)10} = 0.61 \text{ ml/s}$$

Scaling laws of LN₂ pipes vs. Cu cables

 $H = K_{th} \frac{N\pi r^2}{L} \Delta T$ $K_L = \frac{NEr^4}{nD^3(1+\nu)}$

H = heat flow [W]
Re = Reynolds #

 K_L = Longitudinal coil spring stiffness [N/m]

Cu cable

P = pipe pressure [Pa]

r =conductor radius

 $\rho = LN_2$ density [kg/m³]

$$C_{P,LN2}$$
 = specific heat of LN₂ [J/kg·K]

$$Q_v = LN_2$$
 flow rate [m³/s]

 K_{th} = thermal conductivity

LN₂ pipe $H = \rho C_{P IN2} Q_{v} \Delta T$ $\operatorname{Re} = \frac{2\rho Q_{v}}{\mu N \pi r_{i}} < 2000$ In general, $K_{L} = \frac{NE(r_{o}^{4} - r_{i}^{4})}{nD^{3}(1 + \nu)}$ $K_{\rm any \ axis} \alpha \frac{r}{r^3}$ $\Delta P = \frac{8\mu LQ_{\nu}}{M} < 1 \text{ atm}$ L = pipe or conductor length [m]T = temperature [K]E = Young's modulus [Pa] v = Poisson ratio $\mu = LN_2$ viscosity [Pa · s] D = coil spring diameter [m]n = number of spring turns

N = number of conductors

Scaling laws cont.

Advanced LIGO Layout

LIGO

How to get a LN2 Hose to ST2

LIGO

Extra stage, A, in parallel with stage 1 carries hose. Stage A is actuated to follow stage 2 so the hose has does not short seismic isolation. Stage A sensor noise is set by the stage 2 isolation requirement (so it follows stage 2 and not the sensor noise).

Test Mass Radiation Simulation

Ligo Dewar pressure during measurements

LIGO Effect of pressure on test mass temp

N₂ gas therm. cond. vs pressure

LIGO

Ligo Temperature Sensor Locations

Ligo Test Mass Temperature Equations

$$\dot{Q}_{Si} = K_{CL} \Delta T$$
$$\dot{T}_{Si} = \frac{\dot{Q}_{Si}}{C_{Si}}$$
$$\dot{T}_{Si} = \frac{K_{CL}}{C_{Si}} (T_{cold} - T_{Si})$$

$$\dot{T}_{Si} + \frac{K_{CL}}{C_{Si}}T_{Si} = \frac{K_{CL}}{C_{Si}}T_{cold}$$

$$T_{Si} = T_{hot} e^{-\frac{K_{CL}}{C_{Si}}t} + T_{cold}$$

Figure 7.4 Temperature dependence of substrate thermoelastic noise. Frequency f is 1 kHz and beam radius w_0 is 1 mm.

ref: Harry, Bodiya, Desalvo. Optical Coatings and Thermal Noise in Precision Measurement. 2012. pg 113.

Si CTE vs Temperature

LIGO

Single Crystaline Silicon Coefficient of Thermal Expansion

Thermoelastic component of thermal noise goes to zero with CTE.
Ligo Si Thermal Conductivity vs Temp.

Ligo Si Specific Heat vs Temperature

Specific Heat of Silicon

Ligo Thermal Conductivity of Materials

N₂ gas: Thermal conductivity: nonmetallic liquids and gases, Touloukian 1970

Other Problems To Solve

- Flexibility if liquid N₂ hoses or Cu cables
- Temperature/height control of blade springs
- Test mass temperature control
- Test mass temperature tolerance
- How to measure temperature?
 - Measure acoustic modes Young's modulus is temp. dependent
 - Measure test mass diameter combined with CTE data gives temperature
 - Infrared camera

LIGO

- Emissivity of optical coatings
- Lossiness of emissive coatings
- Good emissivity estimates/measurements of Si?
- Power absorption in Si and Si coatings (ppm, W, etc)?
- How noisy is flowing laminar liquid nitrogen: seismic, Newtonian?
- Optical coating thermal noise at 124 K
- How to actuate the test mass is the ESD out?
- Can we put viewports in the heat shield?