

Advanced LIGO Seismic Isolation and Control

Brett Shapiro 30th Pacific Coast Gravity Meeting UC San Diego – 29 March 2014

LIGO

Summary

- Advanced LIGO
- Seismic Isolation Systems
- Control design Ex: quadruple pendulum damping
- How control design influences astrophysical sensitivity

LIGO The Laser Interferometer Gravitational-wave Observatory (LIGO)

Hanford, WA

- 2, 4 km interferometers at 2 sites in the US
- Michelson interferometers with Fabry-Pérot arms
- Optical path enclosed in vacuum
- Sensitive to strains around 10⁻²² -> 10⁻¹⁹m_{rms}
- LIGO Budget ≈ \$60 Million per year from NSF.
- Operated by MIT and Caltech.

LIGO Projected Sensitivity for Adv. LIGO

Suspensions and Seismic Isolation

Advanced LIGO test mass isolation

Suspensions and Seismic Isolation

Advanced LIGO test mass isolation

Ref: LIGO-G1000469-v1; Kissel PhD thesis

LIGO

Suspensions and Seismic Isolation

Advanced LIGO test mass isolation

active isolation platform (2 stages of isolation)

quadruple pendulum (four stages of isolation) with monolithic silica final stage

LIGO

Suspensions and Seismic Isolation

Advanced LIGO test mass isolation

active isolation platform (2 stages of isolation) hydraulic external preisolator (HEPI) (one stage of isolation) quadruple pendulum (four stages of isolation) with monolithic silica final stage

prototype quad pendulum installation Jan 2009 at MIT

active isolation platform (2 stages of isolation)

quadruple pendulum (four stages of isolation)

prototype quad pendulum installation Jan 2009 at MIT

Ligo Damping loop block diagram

- Frequency domain signals, i.e. Laplace or Fourier Transform

Ligo Damping loop block diagram

- Frequency domain signals, i.e. Laplace or Fourier Transform

$$y = \frac{P}{1 + PC}d + \frac{PC}{1 + PC}n$$

Seismic contribution: Want *PC* big to reduce resonant amplitude

Sensor noise contribution: Want *PC* small to minimize transmission

Damping loop block diagram

- Frequency domain signals, i.e. Laplace or Fourier Transform

$$y = \frac{P}{1 + PC}d + \frac{PC}{1 + PC}n$$

For a stable response $1 + PC \neq 0 \implies PC \neq -1$

Seismic contribution: Want *PC* big to reduce resonant amplitude

Sensor noise contribution: Want *PC* small to minimize transmission

LIGO Top Mass Velocity Damping

LIGO Top Mass Velocity Damping

Top Mass Velocity Damping

LIGO Top Mass Velocity Damping

Tuned Top Mass Damping

LIGO

Tuned Top Mass Damping

- Amount of damping
- Sensor noise amp.

LIGO

- Linear Quadratic Regulator (LQR)
- **State Estimation**
- Modal Decoupling

Control design

Optimized Top Mass Damping

Frequency (Hz)

Ref: "Adaptive Modal Damping for Advanced LIGO Suspensions." Brett Shapiro, PhD Thesis, MIT Mechanical Engineering, 2012

LIGO

14/17

LIGO

14/17

LIGO

14/17

14/17

Binary Inspiral Sensitivity

$$r^{2} = \frac{5c^{1/3}\mathcal{M}^{5/3}\theta^{2}}{96\pi^{4/3}\rho^{2}}\int_{0}^{f_{ISCO}}\frac{df}{f^{7/3}h^{2}}$$

Binary Inspiral Sensitivity

$$r^{2} = \frac{5c^{1/3}\mathcal{M}^{5/3}\theta^{2}}{96\pi^{4/3}\rho^{2}} \int_{0}^{f_{ISCO}} \frac{df}{f^{7/3}h^{2}}$$

$$\mathcal{M} = \frac{G}{c^2} \frac{\left(M_1 M_2\right)^{3/5}}{\left(M_1 + M_2\right)^{1/5}}$$
$$f_{ISCO} = \frac{c^3}{6^{1.5} \pi G(M_1 + M_2)}$$

c = the speed of light

 \mathcal{M} = intermediate variable called the chirp mass

 θ = 1.77, accounts for the averaging over the binary positions and orientations

p = 8, the desired signal to noise ratio

f =frequency in Hz

h = the strain sensitivity of the inteferometer \leftarrow

G = gravitational constant

 M_1 and M_2 are the masses of the inspiraling objects

 f_{ISCO} = frequency of the Inner-most Stable Circular Orbit 15/17 Ref: LIGO doc T030276

Ref: LIGO doc T030276 - https://dcc.ligo.org/LIGO-T030276/public

Observable Range to Binary Inspirals

Conclusions

Many control systems are needed to operate the interferometer

• Good controls are needed for good science

Questions?

Backups

Optimized Top Mass Damping

Ref: "Adaptive Modal Damping for Advanced LIGO Suspensions." Brett Shapiro, PhD Thesis, MIT Mechanical Engineering, 2012

Quadruple Pendulum

LIGO

Purpose

• Test mass (stage 4) isolation. the test mass consists of a 40 kg high reflective mirror

Control

- Damping stage 1
- Cavity length all stages

Sensors/Actuators

- BOSEMs at stage 1 & 2
- AOSEMs at stage 3
- Opt. levs. and interf. sigs. at stage 2
- Electrostatic drive (ESD) at stage 4

Observable Range to Binary Inspirals

Advanced LIGO Timeline

Livingston, LA

Hanford, WA

GW sensitivity with various damping

Observable Range to Binary Inspirals

25 W input laser power

Damping type	Binary neutron star range (Mpc)	Binary 150 solar mass black hole range (Mpc)
Velocity damping	143	229
Tuned damping	153	1331
Optimized damping	154	1396

125 W input laser power

Damping type	Binary neutron star range (Mpc)	Binary 150 solar mass black hole range (Mpc)
Velocity damping	194	225
Tuned damping	197	1012
Optimized damping	198	1047

Problem 3: Cavity Signal

The PDH signal for a 4 km aLIGO Fabry-Perot cavity with mirror power transmissions of 1.4% and 7.5 ppm. The cavity finesse is 445. The linear region between the dashed lines is 1 nm wide.

$$PDH = C \frac{\sin\left(4\pi \frac{\Delta L}{\lambda}\right)}{1 + \left[\frac{2F}{\pi}\sin\left(2\pi \frac{\Delta L}{\lambda}\right)\right]^2} \qquad F = \text{cavity finesse} = 445$$
$$\lambda = \text{laser wavelength} = 1064 \text{ nm}$$
$$\text{ThesC Defarbition y_electronic scaling}$$

LIGOBackups: Optical Sensor ElectroMagnet (OSEM)

Birmingham OSEM (BOSEM)

G1100866-v8

BOSEM Schematic

Advanced LIGO OSEM (AOSEM)

- modified iLIGO OSEM

Magnet Types (M0900034) • BOSEM – 10 X 10 mm, NdFeB , SmCo 10 X 5 mm, NdFeB, SmCo • AOSEM – 2 X 3 mm, SmCo 2 X 6 mm, SmCo 2 X 0.5 mm, SmCo

LIGO Predicted Advanced LIGO Sensitivity

Byer-Fejer Talk - 15 March 2013

Assembly, Installation & Performance

- HAM-ISI:
 - Single Stage
 - Passive Isolation above Natural frequency: 1.8 Hz
 - Active Isolation ~ .1 Hz
 35 Hz
- Installed:
 LHO: 5/5
 LLO: 5/5

Courtesy of C. Ramet

Assembly, Installation & Performance

- BSC-ISI:
 - Two Stages
 - Passive isolation above
 Natural Frequencies:
 1 Hz 7 Hz
 - Active Isolation
 ~.1 Hz 40 Hz

Installed:
 – LHO: 5/5
 – LLO: 5/5

Courtesy of C. Ramet

Assembly, Installation & Performance

- HEPI:
 - Single Stage
 - Hydraulic actuation
 - Isolation bandwidth 0.1 Hz 10 Hz
- Installed:
 - LHO: 11/11*
 - LLO: 11/11

Courtesy of C. Ramet

