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Abstract

This paper is a report on the effect of varying mirror shape upon Brownian noise is the
test mass substrate. Using finite element analysis, it was determined that by using frustum
shaped test masses with a ratio between the opposing radii of about 0.7 the frequency of
the principle real eigenmodes of the test mass can be shifted into higher frequency ranges.
For a fused silica test mass this shape modification could increase this value from 5951 Hz
to 7210 Hz, and in a silicon test mass it would increase the value from 8491 Hz to 10262
Hz, in both cases moving the principle real eigenmode to a frequency further from LIGO
bands, reducing slightly the noise seen by the detector. The Brownian thermal noise in
the optimized substrate was calculated in order to demonstrate that it is lower than in a
cylindrical substrate.

Motivation

The direct detection of gravitational waves has been a goal of physics since their existence
was first predicted by Einstein’s general theory of relativity[1]. Moreover, gravitational
waves, once detected, could be used to make measurements of a number of cosmic systems,
particularly compact binary systems[2]. In interforometric gravitational wave detectors such
as advanced LIGO[3], gravitational waves passing through the detector change the length
traveled by light passing through the orthogonally oriented detector arms. This causes the
beams to become slightly out of phase, causing the detector to register a signal[3]. This is an
incredibly sensitive measurement, so minimizing noise from various sources is a significant
issue[4].

According to Visscher[?] for certain cone geometries, there is a peak in the frequency of the
first real eigenmode. If a similar peak could be found for viable substrate geometries, this
would shift the lowest eigenfrequency further from the measurement bandwidth, resulting in
a decrease in substrate Brownian noise. A frustrum shaped test mass was selected as it is a
close analogue to a cone which retains the two flat surfaces, nessesary for use as a test mass
in an interferometric gravitational wave detector.

Theory

Brownian volume fluctuations such as these in LIGO’s mirrors lead to phase changes in the
reflected beam, which can be of similar amplitude to a gravitational wave signal[5]. The
approach of Levin[5] utilizes the fluctuation dissipation theorum to calculate the Brown-
ian noise sensed by the detector through its relation to mechanical loss. The fluctuation
dissipation theorem demonstrates that the cause of fluctuations is the same as the cause
of dissipation in the system, so by probing the dissipation of the system one probes the
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fluctuations as well[6]. Levin’s method of calculation provides the following formula:

Sx(f) =
2kBT

π2f 2

Wdiss

F 2
0

. (1)

In formula 1, kB is the Boltzmann constant, T is the temperature, and f is the frequency
of interest. F0 is a notional amplitude of the oscillating force applied to the surface of the
mirror, which is equivalent to the integral of the pressure over the surface of the mirror.
This force can be thought of as the laser probing the face of the mirror. Wdiss is the time
averaged power dissipation while the oscillating pressure is applied. This dissipation can be
computed from the substrate’s loss angle and the maximum energy of elastic deformation in
the mirror, Umax giving Wdiss = 2πfUmaxφ(f). Calculation of Umax by Levin yields

Umax =
F 2
0

π2E0r0
(1− σ2)I

[
1 +O(

r0
R

)
]

(2)

where E0 is the Young’s modulus of the material, r0 is the Gaussian beam radius of the
laser, or the distance at which the beam intensity falls off to e−1 of its maximal value, σ is
the Poisson ratio of the material, I w 1.87322, and O( r0

R
) is an indication that the result

may be off by a small factor due to the finite size of the mirror. So, combining equations 1
and 2 the formula one obtains a more applicable form:

Sx(f) =
4kBT

f

1− σ2

π3E0r0
Iφ[1−O(

r0
R

)]. (3)

Equations 2 and thus 3 assume the test mass to be an infinite half-space[5], but Liu and
Thorne demonstrate that the correction factor which must be applied results in a modifica-
tion of results of only a few percent[7].

The Eigenfrequency Model

A simple model was constructed representing the test mass mirrors using COMSOL Mul-
tiphysics designed to determine how the principle real eigenfrequencies of the test mass
change with modifications to the test mass shape. Analysis was performed for test masses
constructed out of fused silica, which is used in current gravitational wave detectors, and
silicon, which is expected to be used in future gravitational wave detectors. The model was
constructed based on proposed specifications for the ETM in a future gravitational wave
detector with a test mass radius of R = 0.17m and height of h = 0.2m. The test mass
front face’s radius was held constant, while the back face could be modified by a multiplier,
ratioR. The height of the mirror was modified in order to ensure that it retained its initial
mass. So, for ratioR = 1 the mirror becomes a cylinder with the currently proposed shape,
while for ratioR > 1 the back face becomes larger than the front face and the mirror becomes
shorter, and for ratioR < 1 the back face becomes smaller than the front face and the mirror
becomes longer.

In order to verify the model by an eigenfrequency study was performed to determine that the
principle real eigenfrequcny of the test mass was at 5951 Hz which agrees with known values.
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The model was tested to ensure that it returned convergent values which did not differ by a
significant amount, more than about 3%, when the meshing was made increasingly fine. It
was also nessesary to demonstrate that different types of eigenmodes would respond in such
a way that the principle real eigenmode could be increased by modifying ratioR. There are
several relevent types of eigenmodes, primarily the drumhead and butterfly modes shown in
figure 2.

As shown by figure 3, different types of eigenmodes are shifted to either higher or lower fre-
quencies. The value of ratioR which maximized the frequency of the principle real eigenmode
was desired. The results are presented in figure 4 which demonstrates that the frequency
of the principle real eigenmode of either a fused silica or silicon test mass is maximized for
ratioR ≈ 0.74 which results in a shift of the principle real eigenmode from 5951 Hz to 7210
Hz for a fused silica test mass, and from 8491 Hz to 10262 Hz for a silicon test mass. Both
of these shift the principle real eigenmode of the test mass to higher frequencies further from
the LIGO band, which should result in lower noise.

The Stationary Model

While the shifting of the principle eigenfrequencies found using the eigenfrequency model
indicates that a ratioR value of about 0.74 will minimize the substrate Brownian noise, it
was decided that a calculation which would allow us to determine how much of a reduction
would be expected and verify that that is the optimal value for ratioR should be performed.
So, a more complicated model was constructed, implementing additional constraints and
symmetries present in the physical system which allowed us to numerically determine the
strain energy, Umax required in equation 1. Several modifications were made to the eigen-
frequency model, first a notional force of magnitude F0 applied to the front face of the
mirror with the same Gaussian spatial profile as the laser probing the test mass face was
imlemented. The Gaussian beam size of the laser, and thus the of the applied force, was
set to be rBeam = 0.0156m, the value given by the ETM strawman. Boundary conditions
were needed to prevent the bulk motion of the substrate, so a force of equal magnitude and
opposite direction to the one applied to the mirror’s front face distributed over the body of
the test mass as suggested by Liu and Thorne[7] was also added. In order to ensure that the
model was stable to minor perterbations caused by numerical rounding errors, additional
constraints which prevented the sheer motion and rotation of the test mass were imple-
mented. Additionally, a meshing scheme which contained more nodes in the central regions
where the applied force was greatest was implemented to improve accuracy and decrease the
amount of time required to run simulations.

In order to veryify the model, the results it gave in the case where ratioR = 1 were compared
to analytical results. A volume integration of the strain energy in the substrate using the
results of a stationary study was perfomed to give the simulated result in table . Values were
also caluculated using Levin[5] as well as Liu and Thorne’s[7] calculation methods. The
model was also tested to ensure that it returned convergent values which did not differ by a
significant amount, more than about 3%, when the meshing was made increasingly fine.
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height
√
Sx Simulated

√
Sx % Difference

√
Sx Liu and Thorne % Difference

2.83 ∗ 10−20 m√
Hz

2.95 ∗ 10−20 m√
Hz

4.1% 2.79 ∗ 10−20 m√
Hz

1.4%

Umax was plotted in figure 5 instead of the spectral noise profile since a reduction of Umax

directly reduces the spectral noise profile, and the spectral noise profile is frequency depen-
dent, while Umax is not. As shown in figure 5 the optimal value of ratioR to reduce substrate
Brownian noise is about 0.71 for a fused silica test mass and about 0.66 for a silicon test
mass. At these values of ratioR,

√
Sx is reduced by 2% for a fused silica test mass and 2.2%

reduction for a silicon test mass compared to using a standard cylindrical test mass.

Discussion

The results obtained from our two models agree, but provide slightly different optimal val-
ues of ratioR. The eigenfrequency model demonstrated that a change in mirror shape to
a frustum with ratioR = 0.74 could shift the principle real eigenmode for test masses con-
structed of either fused silica or silicon to higher frequencies, resulting in a reduction of
substrate Brownian noise when probing in the LIGO bands. Because not all types of modes
are probed as strongly by the laser, in particular the laser couples less strongly to butterfly
than drumhead modes, our stationary model demonstrates that the optimal ratioR value to
reduce substrate Brownian noise is smaller than would be predicted from the eigenfrequency
analysis.

Some readers may note that a modification to the mirror mass by changing the height of
the test mass would result in a shifting of the frequencies of the principle eigenmodes of
the test mass. This also changes the optimal value of ratioR since a decrease in mirror
mass will result in a reduction of the frequency of the principle butterfly mode, resulting in
both greater noise due to substrate Brownian noise and a decrease in the optimal ratioR
value to maximize the frequency of the principle eigenmode. Similarly, increasing the mirror
mass will increase the frequency of the principle drumhead mode resulting in a reduction
of substrate Brownian noise and an increase in the optimal ratioR value. These effects are
shown in figure 6.
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Figure 1: Mirror shape for different values of ratioR

(a) ratioR = 1

(b) ratioR = 2

(c) ratioR = 0.5
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Figure 2: Mode Shapes

(a) A drumhead mode

(b) A butterfly mode
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Figure 3: Frequency shifting of lowest eigenmodes against ratioR

Figure 4: Frequency of the principle eigenmode for varying ratioR
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Figure 5: Stain energy for varying ratioR

(a) Fused silica

(b) SiliconUmax

page 9



Figure 6: Strain energy for varying ratioR for varying mass mirrors
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