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Abstract:	
  
	
  
The sensitivity of Initial LIGO gravitational interferometers wave detectors was 
fundamentally limited above a few hundred Hertz by quantum noise, namely shot noise. 
This noise can be reduced by increasing the laser power, or by implementing squeezed 
light. Squeezed light is a quantum phenomenon that results in the creation of two 
correlated photons. Having correlated photons reduces the standard deviation in their 
photon-counting statistic, which results in a decrease in the shot noise. One essential 
component in creating squeezed light is a second harmonic generator, which produces 
green light at twice the frequency of the interferometer laser. The aim of this paper is to 
characterize the second harmonic generator that might be used in Advanced LIGO. We 
measure the intra-cavity losses, characterize the locking of the cavity, and characterize 
the efficiency of conversion from infrared to green light.  
 

 
Introduction:	
  

The existence of gravitational waves (GWs) was first predicted by Albert Einstein 

in his general theory of relativity. In his theory, he predicted that accelerated mass 

quadrupoles, such as supernova explosions and black holes, can produce ripples in the 

spacetime curvature that propagate at the speed of light away from the object that 

generates them [9]. Based on general relativity, GWs are predicted to be transverse and 

quadrupolar in nature [9]. The same way as electromagnetic radiation, GWs have two 

polarizations, which interact weakly with matter. For instance, if we have a ring of free 

test masses, located on the x-y plane, and gravitational waves propagating on the z-axis, 

we would observe that the ring would get disturbed into an ellipse as shown in Figure 1. 



	
  

Figure	
  1.	
  Gravitational	
  wave	
  traveling	
  on	
  the	
  z	
  direction	
  and	
  a	
  ring	
  of	
  free	
  masses	
  on	
  the	
  x-­‐y	
  
plane.	
  The	
  distortion	
  of	
  the	
  ring	
  that	
  is	
  created	
  by	
  the	
  gravitational	
  waves	
  depends	
  on	
  the	
  GWs	
  
polarization.	
  

The strain that the gravitational waves would create on the ring of test masses depends on 

the GWs amplitude, which is given by the formula ∆𝐿 = ℎ𝐿, where h is the amplitude of 

the GWs and L in our example is the diameter of the circle.  

 In order to detect GWs, two Laser Interferometer Gravitational-Wave 

Observatories (LIGO) were built: one in Hanford, WA, and the other one in Livingston, 

LA. These two observatories use a Michelson Interferometer of 4km long with quasi-

free-falling mirrors. By using a Michelson Interferometer, in theory we would be able to 

detect GWs since GWs would interact with the quasi-free-falling mirror by stretching one 

arm and contracting the other arm [7]. However, GWs from sources such as supernovae 

or collision of neutron stars are predicted to have amplitudes of the order of 10-21[7]. 



Gravitational wave detectors need to make extremely low noise measurements to detect 

these small signals with a good signal to noise ratio. 

Since our gravitational wave detector is a Michelson Interferometer with a quasi-

free-falling mirror, the quantum nature of electromagnetic waves imposes a fundamental 

limit on the sensitivity of the detector. This limitation is due to quantum noise namely 

photon counting noise or shot noise. Shot noise is due to the fact that photons are used in 

order to measure the change in the mirrors. There is an uncertainty associated with the 

number of photons that the detector detects. The uncertainty in the number of photons 

obeys Poisson statistics with an uncertainty given by 𝑛, where n is the number of 

photons. One solution to shot noise is to increase the laser power. However, increasing 

the laser power produces another measurable noise namely radiation pressure noise [9]. 

Radiation pressure noise is the result of photons hitting the mirrors and randomly 

displacing them. Radiation pressure noise can be easily solved by increasing the weight 

of the quasi-free-falling mirrors. On the other hand, a better way to improve the 

sensitivity of the detector without increasing the laser power is to use something called 

squeezed light. Squeezed light is a quantum phenomenon that results in the creation of 

two correlated photons or entangled photons. Since second harmonic generator (SHG) is 

an essential component in the creation of squeezed light, we need to build and 

characterize a SHG suitable for an advanced LIGO squeezer.  

	
  

	
  

	
  

	
  



I. Second Harmonic Generation: 

Our second harmonic generator (SHG) is a device that consists on a nonlinear 

crystal, located at the center of the device, two mirrors, located at in each ends of the 

device, a PZT and a temperature controller. The Figure 2 below illustrates the second 

harmonic generator that we are using.  

	
  

Figure	
  2.	
  Second	
  Harmonic	
  Generator,	
  designed	
  at	
  AEI	
  Hannover,	
  Germany. 

 Before we take a look at what happens inside the SHG, let’s take a look at 

electromagnetic waves in matter. When electromagnetic waves propagate inside a 

dielectric medium, the electric field vector interacts with the charges in the dielectric 

material causing a displacement of charges as shown Figure 3. The displacement of 

charges results in an induced electric field that opposes the incoming electric field. This 

induced electric field inside the dielectric material is characterized by the Polarization 

vector, P, which is defined by the following formula 𝑷 = 𝜀!𝜒(!)𝑬, where 𝜀! is the free-

space permittivity, and 𝜒(!) is the linear susceptibility [5]. 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

In linear optics, P depends linearly on the electric field, which means that an increasing 

in the electric field results in an increasing P. In nonlinear optics, the P does not obey 

linearity but instead the polarization vector is a power series expansion of the electric 

field, which is given by  

𝑷 𝑡 = 𝜀! 𝜒 ! 𝑬 𝑡 + 𝜒 ! 𝑬𝟐 𝑡 + 𝜒 ! 𝑬𝟑 𝑡 +⋯ ≡ 𝑷(𝟏) 𝑡 + 𝑷(𝟐) 𝑡 + 𝑷(𝟑) 𝑡 +⋯ 

where 𝜒 !  and 𝜒 !  are known as the second and third nonlinear optical 

susceptibilities[2]. The term 𝑷(𝟐) 𝑡 = 𝜒 ! 𝑬𝟐 𝑡  is referred as the second order 

nonlinear polarization vector, and this term is the one responsible for second harmonic 

generation in non-centrosymmetrical crystals or crystals that do not have inversion 

Figure	
  3a)	
  A	
  neutral	
  atom	
  before	
  and	
  after	
  an	
  applied	
  
electric	
  field. 

Figure	
  3b)	
  A	
  dielectric	
  material	
  in	
  the	
  present	
  of	
  an	
  
electric	
  field. 



symmetry [2]. Now, let’s imagine that we have an incident electric field in a non-

centrosymmetrical crystal whose electric field is given by: 

𝑬 𝑡 = 𝑬𝑒!!!! + 𝑬∗𝑒!!! 

Let’s take the expression for the second order nonlinear polarization vector and substitute 

the electric field: 

𝑷 𝟐 𝑡 = 𝜀0𝜒 2 𝑬(𝒕)𝟐 

𝑷𝟐 𝑡 = 𝜀!𝜒 ! 𝑬𝑒−𝑖ω𝑡 +𝑬∗𝑒𝑖ω𝑡 𝟐 

= 𝜀!𝜒 ! 𝑬𝟐𝑒−2𝑖ω𝑡 + 2𝑬𝑬∗ +    𝑬∗ 𝟐𝑒2𝑖ω𝑡  

= 2𝜀!𝜒 ! 𝑬𝑬∗ + 𝜀!𝜒 ! 𝑬𝟐𝑒−2𝑖ω𝑡 + 𝑬∗ 𝟐𝑒2𝑖ω𝑡  

In the formula above, we can observe the generation of a frequency 2ω, which is second 

harmonic generation. In other words, second harmonic generation is the process in which 

monochromatic coherent wave of frequency ω induced a coherent wave emission of 

frequency 2ω as illustrated in the Figure 4 [5].  



	
  

Figure	
  4.	
  	
  An	
  incident	
  wave	
  of	
  frequency	
  ω	
  propagates	
  in	
  a	
  second	
  order	
  nonlinear	
  medium	
  inducing	
  an	
  
emission	
  wave	
  of	
  frequency	
  2ω. 

 

 

When a 1064 nm continuous-wave laser hits the crystal inside the second 

harmonic generator, the electric field of the incident infrared light interacts with the 

second order nonlinear crystal.  As a result of this interaction as we saw above, a second 

harmonic wave is created, which produced green light at twice the optical frequency of 

the incident infrared light.  

	
  

II.	
  Intra-­‐Cavity	
  Loss	
  Characterization:	
  	
   	
  

The second harmonic generator was assembled without the crystal inside in order 

to be able to measure the intra-cavity loss.  In the past, one of our SHGs failed after 

operating thousands of hours, so we investigated the intra-cavity losses. After having 

built the SHG, we designed the optical setup as shown in Figure 5, and we placed each 



component on the optical table. Then, we aligned the laser and measured the waist size of 

the beam by using a beam profiler. We used the beam splitter that is located before the 

first mirror in Figure 5 as our reference point, and we found the waist size to be  

132.5 µm.  

	
  

Figure	
  5.	
  	
  Optical	
  layout,	
  the	
  black	
  dashes	
  represent	
  the	
  Pound-­‐Drever-­‐Hall	
  (locking)	
  technique. 

After obtaining the waist size that the laser has, we needed to know the size of the 

waist that we needed inside the SHG. Since the SHG is a Fabry-Perot cavity with two 

mirrors of the identical curvature, the waist inside the cavity is given by , 

where ωo is the waist size, L is the length of the cavity, and g is the resonator parameter; 

by definition , where R is the curvature of the mirrors. Using this formula, we 

found that the waist of our cavity is 63 µm. Using the information about the waist size 

w0
2 =

Lλ
π

g
1− g

g =1− L
R



needed inside the cavity and the actual waist size that the laser has, we calculated the 

position where the lenses need to be placed on the optical table as shown in Figure 6.  

 

	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Figure	
  6.	
  Beam	
  width	
  versus	
  distance	
  away	
  from	
  the	
  beam	
  Splitter.	
  

We placed the cavity in the same position as shown in Figure 6.  Then, we aligned 

the laser with the cavity. The intra-cavity loss can be found by using this formula 

, where r is the reflectivity of the mirror, I is the photocurrent 

measured by the photodetector or the reflect power from the cavity, and the formula 

.  We measured the intra-cavity loss, and we found an intra-cavity 
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loss of 4.70% without the crystal, which is surprisingly high, since we were expecting a 

loss of less than 1%.   

 

III. Locking the Cavity to the Laser and its Characterization: 

The cavity will be locked to the laser on the fundamental TEM00 mode by using 

the Pound-Drever-Hall method. A basic diagram of the Pound-Drever-Hall method is 

illustrated in Figure 7.  

	
  

Figure	
  7.	
  The	
  basic	
  Pound-­‐Drever-­‐Hall	
  layout	
  for	
  locking	
  the	
  cavity	
  to	
  the	
  laser. 

In Figure 7, a 1064 nm laser is sent to a cavity. The faraday isolator prevents the reflected 

beam from retroreflecting back to the laser and destabilizing it. The beam splitter and the 

quarter wave plate convert linear polarized light into circular polarized light. The 

photodetector takes the reflection light and its output goes into a mixer. The mixer’s 

output goes to the PZT, an actuator control the length of the cavity.  By using a feedback 

control system, the cavity can be locked on resonance. 

 



Before locking the cavity, we measured the mode mismatch by scanning the cavity and 

measuring the ratio of the height of the 00 peak to the mode mismatch peaks. The mode 

mismatch resonating inside the cavity are 20, 02, and 11 modes, which modes are shown 

in Figure 8. We measured a mode mismatch of 10.58% as shown in Figure 9.  

	
  

Figure	
  8.	
  Hermite	
  Gaussian	
  Modes	
  [8] 

	
  

Figure	
  9.	
  The	
  yellow	
  signal	
  is	
  the	
  transmitted	
  signal,	
  and	
  the	
  higher	
  two	
  peaks	
  in	
  this	
  graph	
  is	
  the	
  00	
  
peak	
  and	
  the	
  other	
  three	
  small	
  peak	
  are	
  20,	
  02	
  and	
  11	
  modes	
  respectively. 



For our Pound-Drever-Hall method, we are not using the reflected light but 

instead we are using the transmitted light. We are using the transmitted light because the 

second harmonic generation required linear polarization. Because we are using 

transmitted light for the Pound-Drever-Hall method, the sidebands are been introduced 

inside the cavity, which adds some phase noise to the circulating field inside the cavity. 

In Figure 5, the EOM is the phase modulator. The signal from the oscillator is used to 

drive the EOM, and it is used at the mixer to demodulate the signal from the 

photodetector. The output of the mixer is the error signal, which is proportional to the 

cavity length. The mixer takes the output of the photodetector, which is connected to the 

servo. This error signal is used by a servo controller. Inside the cavity, there is a PZT, 

which is equivalent to an actuator in Figure 7. Using the Pound-Drever-Hall method, we 

were able to lock the cavity as showing in Figure 10. 

	
  

Figure	
  10.	
  This	
  is	
  the	
  Pound-­‐Drever-­‐Hall	
  method	
  in	
  a	
  Fabry-­‐Perot	
  cavity.	
  The	
  blue	
  signal	
  represents	
  the	
  
Pound-­‐Drever-­‐Hall	
  error	
  signal.	
  The	
  yellow	
  signal	
  represents	
  the	
  transmitted	
  signal. 



After locking the cavity to the laser, we now need to characterize how well our 

locking works. In order to characterize it, we are going to use a spectrum analyzer. We 

are going to look at the transfer function of the open loop gain by using the spectrum 

analyzer, and we are going to see the frequency response of the PZT. We used the open 

loop transfer function to be able to characterize the lock performance and stability by 

looking at how much noise gets suppressed as a function of frequency. For the open loop 

gain, we are expected to observe a low pass filter.  In order to characterize the system, we 

injected noise into the system using the spectrum analyzer, and we measured how the 

system reacted to the noise. We are interested in the unity gain frequency of the open 

loop transfer function and on the phase unity gain frequency, which tells us how stable 

the loop is. The further away the phase unity gain frequency is from 180° in the open 

loop the more stable the system is. Figure 11 illustrates the open loop gain, which has a 

low pass filter as we expected for the magnitude of the transfer function, and the phase is 

less than 180°, which tells us that the locking is stable. For the PZT frequency responses, 

we expected to observe constant amplitude until the resonance frequency, which occurs 

between10kHz to 20kHz.  Figure 12 illustrates the frequency response of the PZT and as 

expected the frequency is constant until the resonance frequency, around 10kHz. The 

measurement illustrates that our locking is working well. 



	
  

Figure	
  11.	
  Cavity	
  Open	
  Loop	
  Gain	
  frequency	
  response 

	
  

Figure	
  12.	
  PZT	
  frequency	
  response 

 



IV. Phase Matching and Conversion Efficiency 

 After characterizing the cavity locking, we placed the crystal inside the cavity. 

Before we look at the conversion efficiency, we need to first take a look at the phase-

matching condition in our cavity. From the previous sections we know that when an 

electric field is applied to a second order nonlinear crystal, the incident electric field 

induces an electric field inside the crystal. This induced electric field is twice the 

frequency of the incident electric field. As the incident electric field propagates through 

the nonlinear dielectric material, there is a continuous generation of electric fields as 

shown in Figure 13. In Figure 13, an electric field is applied to a non-centrosymmetrical 

crystal, which results in second harmonic generation. The generated electric field at time 

T interacts with the electric field generated at time 2T and so on. This interaction between 

the generated electric fields can be either constructive or destructive.  

	
  

Figure	
  13.	
  	
  A	
  monochromatic	
  wave	
  of	
  frequency	
  ω	
  propagates	
  inside	
  a	
  non-­‐centrosymmetrical	
  crystal	
  in	
  
the	
  z	
  direction.	
  This	
  results	
  in	
  second	
  harmonic	
  generation,	
  where	
  a	
  field	
  of	
  frequency	
  2ω	
  is	
  generated.	
  
The	
  generated	
  field	
  interacts	
  by	
  either	
  constructive	
  or	
  destructive	
  interference. 



As we can see in Figure 13, we would like the generated electric field to interact 

constructively because this will result in the greater conversion efficiency. In other 

words, the phase matching condition is an important factor when looking at the 

conversion efficiency in a SHG. 

Let’s assume that we have an electric field E1(ω) and E2(2ω) propagating inside 

crystals in the z direction and whose electric fields are given by the following formulas: 

                                                                                                                𝑬𝟏 ω, 𝑧 = 𝒂𝟏𝐴! 𝑧 𝑒!!!!                                          (4.1) 

                                                                                                                𝑬𝟐 2ω, 𝑧 = 𝒂𝟐𝐴! 𝑧 𝑒!!!!                                        (4.2) 

 where a1 and a2 are the unit vectors along the light polarization and A1(z) and A2(z) are 

the amplitude functions and k1 and k2 is the wave vector [2]. The nonlinear polarization 

vector associated with these two given electric fields will be as follow: 

  𝐏𝟐 ω, 𝑧 = 𝜀!𝜒 ! 2𝜔,−𝜔 𝑬𝟐𝑬𝟏∗ = 𝜀!𝜒 ! 2𝜔,−𝜔 𝒂𝟐𝒂𝟏∗𝐴! 𝑧 𝐴!∗ 𝑧 𝑒! !!!!! !     (4.3) 

𝐏𝟐 2ω, 𝑧 = 𝜀!𝜒 ! 𝜔,𝜔 𝑬𝟏𝟐 = 𝜀!𝜒 ! 𝜔,𝜔 𝒂𝟏𝟐𝐴𝟏𝟐 𝑧 𝑒!!!!!                                      (4.4) 

By using the coupled-wave equation and the slowly varying amplitude approximation, we 

have the following equation [2]: 

                                                                          !! !,!
!!

= !"
!" !

𝒂𝟎 ∙ 𝑷𝑵𝑳 ω, 𝑧 𝑒!!"#                            (4.5) 

where PNL is the nonlinear polarization vector. By taking equation 4.5 in terms of the 

A2(z) and substituting equations 4.4 into it, we would obtain the following results: 

!!! !,!
!"

= !!!
!! !!

𝒂𝟐 ∙ 𝑷(𝟐) ω, 𝑧 𝑒!!!!!                                              (4.6) 

= !!!!!
!! !!

𝒂𝟐 ∙ 𝒂𝟏𝟐𝜒 ! 𝜔,𝜔 𝐴𝟏𝟐 𝑧 𝑒!!!!! 𝑒!!"#                        (4.7) 

= !!!!!
!! !!

𝒂𝟐 ∙ 𝒂𝟏𝟐𝜒 ! 𝜔,𝜔 𝐴𝟏𝟐 𝑧 𝑒!(!!!!!!)!                             (4.8) 

from equation 4.8, we can define the phase mismatch factor as follows: 



∆𝑘 = 2𝑘! − 𝑘! =
!!
!!

𝑛 𝜔 − 𝑛(2𝜔)                                          (4.9) 

where λ1 is the wavelength of the fundamental wave (or the wavelength of the incident 

wave). Equation 4.8 tells us that the larger Δk is, the smaller the amplitude will be, which 

results in less intensity because intensity is the square of the amplitude. The phase 

matching condition is when Δk=0, so 2n(ω)=n(2ω) 

From the phase mismatch expression that we obtained in Equation 4.9, we know 

that n(ω)≠n(2ω) because the index of refraction is a function of frequency. However, in 

birefringent materials, the phase matching condition of 2n(ω)=n(2ω) is possible since 

materials that displayed birefringence have different indices of refraction for different 

polarization. There are three different methods or techniques that could be used in order 

to achieve the phase matching condition: 1) type I phase matching, 2) type II phase 

matching, and 3) quasi phase matching. Since the crystal that we are using is potassium 

titanyl phosphate (KTP), we would use quasi phase matching techniques. In the case of 

using quasi phase matching, we would have an expression for the mismatch Δk as 

following[4]: 

∆𝑘 = 𝑚
2𝜋
Λ − 𝑘! − 2𝑘! = 0 

where Λ is the period in which the positive c axis of the crystal alternates in orientation 

and m is an integer. By plotting the amplitude of the generated fields versus the distance 

that the fields propagate inside the crystal, in Figure 14, we can observe how quasi phase 

matching give us an increasing amplitude. In Figure 14, we can observe that perfect 

phase matching grows linearly as the generated field propagates through the crystal. 

However, as the generated fields propagate through the crystal in the presence of phase 



mismatching, the net electric field behaves as a sinusoid with small amplitude. In the case 

of quasi phase matching, we can observe that when the amplitude is about to decrease as 

a result of phase mismatch, the nonlinear coupling coefficient deff changes its sign, which 

results in the amplitude of the generated electric fields to increase monotonically [2].  

	
  

Figure	
  14.	
  a)	
  When	
  perfect	
  phase	
  matching	
  condition	
  is	
  satisfied	
  the	
  amplitude	
  of	
  the	
  field	
  increase	
  
linearly.	
  b)	
  In	
  the	
  case	
  of	
  quasi	
  phase	
  matching,	
  the	
  amplitude	
  increases	
  monotonically.	
  c)	
  In	
  the	
  case	
  of	
  
phase	
  mismatch,	
  a	
  sine	
  wave	
  with	
  small	
  amplitude.	
  [3]. 

The quasi phase matching does not display a linear fast increase as perfect phase 

matching, but it displays a monastically linear that does not allow phase mismatch.  

Phase matching can be accomplished by two different methods: 1) by angle 

tuning and 2) by temperature tuning. In this experiment, we are going to accomplish 

phase matching by using temperature tuning. Before we experimentally measure the 

phase matching at different temperature, we first simulated it using Matlab in order to 



know what to expect. Figure 15 illustrated the prediction of the phase matching as the 

temperature is varied. 

	
  

 

	
  
Figure	
  15.	
  Normalized	
  prediction	
  of	
  the	
  phase	
  matching	
  curve 

In Figure 15, we obtained that the maximum power intensity will be obtained at 35°C. In 

order to measure the phase matching curve, we are going to use a photon detector and an 

oscilloscope to measure the power of the green light. As we changed the temperature by 

small steps, we recorded the voltages for the different temperatures. Then, we plotted 

voltage versus temperature, and we obtained a temperature of 33°C for the maximum 

voltage as shown in Figure 16. Our measurements of the phase matching curve agrees 

with our prediction. 

 
 



	
  
Figure	
  16.	
  Obtained	
  Phase	
  Matching	
  Curve	
  at	
  an	
  incident	
  infrared	
  power	
  of	
  15.33mW 

 

 After characterizing the phase mismatch, let’s take a look at the conversion 

efficiency of our second harmonic generator. The conversion efficiency will be given by 

𝜂!"# =
𝑃!"#
𝑃!"#$

 

This will meaning that increasing the power of the incident infrared light will result in an 

increase in the power of the generated green light. We measured the power of the incident 

infrared and the power of the green light, and we found a conversion efficiency of 27% at 

an incident power of 100mW. Since the conversion efficiency increases with increase of 

the power, we expected to obtain higher conversion efficiency. In Figure 16, we 

measured the power of the green light from three different incident infrared powers. We 

calculated the conversion efficiency, and then we fitted to a curve as shown in Figure 17. 

This graph below tell us that we could obtained a conversion efficiency of about 45% if 



we use half of a Watt. This means that having an incident infrared of power of 500mW 

would give us a green light power of 225mW, which is good enough for Advance LIGO. 

 

	
  

Figure	
  17.	
  Conversion	
  efficiency	
  versus	
  input	
  power.	
  The	
  three	
  circle	
  dots	
  in	
  the	
  graph	
  represent	
  the	
  
measured	
  data,	
  and	
  the	
  green	
  curve	
  is	
  the	
  fitted	
  curve	
  that	
  predicted	
  the	
  conversion	
  efficiency	
  with	
  
increase	
  input	
  power. 

 

 

V. Conclusions 

 In this paper, we characterized the second harmonic generation by looking at the 

intra-cavity losses, the stability and locking of the cavity, and the conversion efficiency. 

We found an intra-cavity loss of 4.70%, which is bigger than what we expected it to be. 

We looked at the locking and the stability of the cavity by looking at the open loop gain 



of the system and the frequency response of the PZT, and the we found that the cavity is 

working well and its locking is stable for the experiment. The conversion efficiency 

seems promising since we got 27%, which the conversion efficiency curve tell us that we 

could potentially obtained a 45% of conversion efficiency by just increasing the incident 

power.  However, if we reduce the mode mismatch by aligning the cavity better, we 

could potentially obtain higher conversion efficiency. For future experiments, we need to 

measure the conversion efficiency when the laser run over thousands of hours in order to 

characterize the reduction in conversion efficiency over a long timescale.  
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