Influence of Differential Rotation and Precollapse Angular Momentum on Stellar Collapse and Its Gravitational Wave Signature

A. M. DeMaio

California Institute of Technology, TAPIR LIGO Scientific Collaboration

Introduction

Core-Collapse Supernovae (CCSN)

1. Iron core 2.Chandrasekhar mass 3.Rapid collapse 4.Bounce 5. Energy loss 6.Shock revival 7.Explosion

- Shock revival?
- How is angular momentum distributed?
- Remnant?

How do stars rotate?

Why Gravitational Waves?

- Traditional methods are insufficient
- Gravitational waves produced by accelerated mass quadrupole moments in the inner core

How Do We Study Gravitational Waves?

- Analytical approach? No.
- Numerical approach? Yes.
- Parameter study of core collapse, bounce, and ring-down
 - Differential rotation
 - Total rotation
 - EoS

Model

Central angular velocity

Differential and Total Rotation

Criteria

1. Convective stability

 $\rho \frac{\partial^2 \xi}{\partial t^2} = \mathbf{L}\xi \,, \quad \int_V \xi \cdot \mathbf{L}\xi \,\mathrm{dx} > 0 \qquad \text{(Fjørtoft-Lebovitz Criterion)}$ $\int_V \xi \cdot \mathbf{L}\xi \,\mathrm{dx} = -\int_V \xi \mathbf{M}\xi \,\,dm - \int_V [\frac{(\delta p)^2}{\Gamma_1 p \rho} + \xi \cdot (\nabla \delta V)] \,\,dm$

 $\mathrm{trace}\ \mathbf{M}>0\,,\quad \det\ \mathbf{M}>0\qquad \text{(assuming no p-modes, many nodes)}$

 $\frac{1}{\varpi^{3}}\frac{\partial j^{2}}{\partial \varpi} + \frac{1}{c_{p}}\frac{\gamma - 1}{\Gamma_{3} - 1}(-\mathbf{g}) \cdot (\nabla S) > 0 \quad , \quad -g_{z}(\frac{\partial j^{2}}{\partial \varpi}\frac{\partial S}{\partial z} - \frac{\partial j^{2}}{\partial z}\frac{\partial S}{\partial \varpi}) > 0 \quad \text{(assuming no p-modes, many nodes)}$ $(-\mathbf{g}) \cdot (\nabla S) > 0 \quad , \quad \frac{d}{d\varpi}(\Omega^{2}\varpi^{4}) > 0 \quad \text{(in the limits of no rotation and homentropic conditions)}$

2. Build on previous trials

3. Simple and easy to use!

Methods

Code

- Axisymmetry (2D), equatorial symmetry
- Conformally flat GR
- GR hydrodynamics

Microphysics

- Equation of state
 - Lattimer & Swesty, K = 220 MeV
 - Shen et al.
- Parametrized deleptonization (collapse)
- Neutrino heating/leakage (post-bounce)

Spherical Grid

- *R* = 3,000 km
- 250 radial points (log spaced)
- 40 angular grids
- Central resolution of 250 m

Results

Dynamics Cont.

Density decreases with total rotation, increases with differential rotation.

Gravitational Waves

With differential rotation, magnitude of first peak decreases, but that of second and third peaks increase. All effects more pronounced with total rotation.

Gravitational Waves Cont.

Hayama et al. (2008) incorrect!

Bayesian Analysis

Bayesian Techniques

Principal Component Analysis

 $\begin{aligned} \mathbf{W}_{\mathbf{i},\mathbf{j}} &= h(A1\Omega_j, t_i) \\ \mathbf{W} &= \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\mathbf{T}} \\ \mathbf{U} &= \begin{bmatrix} \mathbf{x_1} & \mathbf{x_2} & \mathbf{x_3} & \dots & \mathbf{x_m} \end{bmatrix} \\ \epsilon_i &= \beta_1 x_{1,i} + \beta_2 x_{2,i} + \beta_3 x_{3,i} \dots + \beta_7 x_{7,i} \end{aligned}$

Nested sampling...

(Repeat for all five differential rotation categories...)

Overlap...

Detectability

Detectability increases with total rotation.

Summary

- Q Is the angular momentum distribution detectable?
- A Yes, at rapid rotation.

Acknowledgements

A special thank you to my mentors Ernazar Abdikamalov and Dr. Christian Ott, the TAPIR group, and the LIGO SURF Program.