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ABSTRACT
The explosion mechanism of core-collapse supernovae is not yet fully understood. Two candidate mecha-
nisms exist: magnetically-driven explosions and neutrino-driven explosions. Initial simulations with spher-
ical (1-dimensional) and axial (2-dimensional) symmetry did not yield robust explosions, despite including
neutrino-heating in their models. Instead these simulations saw the post-bounce shock stall, never making it
to the surface of the star to cause explosions that would be visible from Earth. Current 3-dimensional general
relativistic simulations, such as the one featured in Ott et al. (2013), study the explosion mechanism in greater
detail to draw conclusions about the supernova from the observed signal. To do so, the shock must be simulated
with high-resolution, but increasing the resolution of the entire simulation is too computationally costly. We
develop a routine in the Einstein Toolkit that finds the location of the shock at any time and applies adaptive
mesh refinement to resolve the shock surface without resolving unimportant regions.
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1. INTRODUCTION

Supernovae are cosmic explosions so bright that they can
briefly outshine the galaxies in which they occur. The ob-
servational signatures of supernovae are quite diverse, but
are generally separated into two categories: Type I super-
novae and Type II supernovae. These are distinguished by the
strong presence of hydrogen emission lines in Type II super-
nova spectra and the lack of these lines in Type I supernovae.
About 80% of Type I supernovae have nearly identical light
curves, or evolutions of their brightnesses over time (Bethe
1990). These supernovae are thought to be the thermonuclear
explosions of white dwarves, a process we will not discuss
further in this report. The rest of Type I supernovae, as well
as all Type II supernovae, are thought to be the result of core-
collapse in massive (& 8 M�) stars (Woosley & Janka 2005).

Core-collapse supernovae occur when the iron core of mas-
sive stars, which is held up against gravity by electron degen-
eracy pressure, reaches the Chandrasekhar mass through ac-
cretion of newly-fused iron. Above this mass, the core cannot
be supported against gravity by electron degeneracy pressure
and consequently collapses. It is the gravitational energy re-
leased by this collapse that powers the supernova explosion,
though the mechanism of the transfer of energy from gravi-
tational energy to kinetic energy, electromagnetic energy, and
neutrino energy that result in the observational signature of
supernovae is detailed. Essential to the explosion is a shock
wave that starts as the inner core reaches densities exceed-
ing nuclear density (ρ > 4 − 5× 1014 g cm−3). At these den-
sities, the strong nuclear force becomes repulsive, resulting
in a stiffened equation of state. The inner core consequently
overshoots its equilibrium and rebounds (Woosley & Janka
2005), launching a shock wave that propagates outwards and
eventually blows off the outer parts of the star. However, cur-
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rent simulations do not get that far; the wave quickly stalls
as it emits neutrinos and disassociates iron nuclei in the still-
infalling outer core. These stars consequently fail to explode,
indicating that our current models are insufficient. A possi-
ble mechanism to resolve this problem may be related to the
prodigious neutrino generation of the collapsed inner core,
which is now a proto-neutron star. This neutrino generation is
a process that releases the majority of the supernova’s energy.
If a small fraction of the neutrinos are absorbed by the matter
near the shock, enough energy may be deposited for the shock
to be revived. The deposition of neutrino energy in the shock
would lead to convective instability, which would in turn help
conserve the shock energy from neutrino losses and lead to
non-radial deformation that facilitates further energy deposi-
tion from neutrinos (Woosley & Janka 2005). It is unknown
as to whether this proposed mechanism for reviving the shock
is sufficient to cause the observed explosions, and the frontier
of supernova simulation seeks to answer this question.

Early core-collapse supernova simulations, such as that
of Colgate & White (1966), were one-dimensional and
spherically-symmetric. Later two-dimensional, axisymmet-
ric models allowed for more complex fluid motion such as
convection. However, these simulations did not yield ro-
bust explosions. The current frontier is three-dimensional,
fully-general-relativistic simulations such as that of Ott et al.
(2013). These simulations typically have zones of differ-
ent simulation resolutions to allocate computing resources to
fixed spatial locations based on the desired accuracy at those
locations. For example, Ott et al. (2013) use a set of nested
boxes, centered on the proto-neutron star, in which the inner
boxes have higher resolutions than the outer boxes. In this
way, the dense regions in the interior are resolved more finely
than the infalling, lower-density material.

However, this method of nested resolution zones has dis-
advantages. In the current implementation, the zones are cu-
bical, whereas spherical zones would more closely match the
roughly spherically-symmetric density distribution in the star.
Interior must always have higher resolution than the boxes
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that contain them, which means that features at larger radii
can never have higher resolution than features at smaller radii.
Because the shock wave is an important feature, one of the
higher-resolution nested boxes is dynamically expanded to al-
ways contain the shock. Consequently, the region between the
shock and the proto-neutron star receives the same or greater
resolution than the shock, even though it is relatively unim-
portant in the evolution of the supernova.

A technique called adaptive mesh refinement (AMR), pio-
neered by Berger & Oliger (1984), allows for dynamically-
varying resolution at any location in a Cartesian-gridded sim-
ulation. In this technique, Cartesian grid patches of higher
resolution are laid down on top of a lower-resolution base-
grid, or coarse grid. Multiple of these patches can be stitched
together together to form refined regions of any shape. Most
importantly, these patches can be created and destroyed on the
fly according to any desired criteria. After the coarse grid is
evolved, the refined patches receive their boundary informa-
tion from the coarse grid and are themselves evolved, after
which values from the refined patches are interpolated back
into the coarse grid.

The Einstein Toolkit is a computational platform designed
for use in numerical relativity and relativistic astrophysics
(Löffler et al. 2012). A module for the Einstein Toolkit called
CarpetRegrid2 (CR2) allows for adaptive mesh refine-
ment as well as the nested refinement boxes mentioned ear-
lier. In this project, we attempted to apply the AMR func-
tionality of CR2 to refine the shock wave of two models: a
simple, spherically-symmetric explosion, and a snapshot of a
post-bounce core-collapse supernova.

In Section 2 of this report, we present the routine imple-
mented to refine the shock wave, as well as descriptions of
the two explosion models to which we apply it. In Section 3,
we discuss the qualitative and quantitative performance of our
application to the two models. In Section 4, we make closing
remarks and present ideas for further work.

Our report and simulation use units where the universal
gravitational constant G and the speed of light c have both
been set to one. The basic unit for length and time are both
one solar mass (1 M�, referred to as one simulation unit),
which is equivalent to 1.48 km or 4.93 µs.

We will refer to “resolution” and “linear point density” in-
terchangeably, meaning the number of grid points per length
unit (1.48 km) along a line parallel to one of the coordinate
axes. The resolution could be different along different coor-
dinate directions, but in our simulations the resolution is the
same along each direction.

2. METHODS

2.1. The Shock-Tracking Routine

The goal of our application of AMR is to resolve the shock
front, but to do so the shock must be localized. A shock is a
sudden spatial or temporal change in the properties of a sub-
stance: in our case, the matter in the supernova. We choose to
focus on the spatial definition of the shock, therefore the quan-
tity of interest is the spatial gradient of the properties of the
stellar matter. The shock manifests itself as an abrupt change
in any of the simulation quantities, but a priori we did not
know which quantity would reveal the best-defined shock sur-

face. Possibilities include density, pressure, entropy, internal
energy, and fluid velocity.

For quantity φ, we define the shock strength χφ:

χφ =
∣∣∣∣∇φ

φ

∣∣∣∣ (1)

Because the shock strength is proportional to the gradient,
we define the shock to be at points where the shock strength
is large, i.e., larger than an arbitrary threshold. But unlike the
gradient, the shock strength is independent of the direction of
the spatial change in the simulation quantity, and because we
normalize by the quantity’s value the shock strength’s units4

are independent of the chosen quantity.

One might argue that the direction information of the gra-
dient is useful; for example, perhaps we only wish to apply
AMR to radial shock fronts, where the shock surface wraps
spherically around the proto-neutron star. In that case, a bet-
ter shock strength metric would be ξφ = |r̂ ·∇φ/φ|, which
picks out only radial change. While this would certainly focus
AMR on spherical shock fronts, it would be less sensitive to
deformed or off-center fronts. Additionally, it would neglect
interesting features such as convection zones that may possess
strong angular rates of change. Because convection as well as
oscillating deformations of the shock front may be essential
to the rejuvenation of the shock, we decided to use absolute,
direction-unbiased rate of change as our criterion for locating
the shock and other important features.

Other more sophisticated definitions of the shock strength
that include further derivatives or combine functions of multi-
ple simulation quantities may lead to more accurate or better-
defined shock fronts. In this project we develop shock track-
ing with the simplest model possible as a first attempt at ap-
plying AMR in a supernova simulation, but due to the mod-
ularity of our design, the shock-tracking component of our
routine can be refined at any point in the future.

Simulations in the Einstein Toolkit have a set of grid points,
divided between the coarse level and the refined levels, that
permeate the simulation space. These are the points at which
the simulation is evolved. Variables called grid functions have
values at each grid point and at each time-step. Density, pres-
sure, internal energy, entropy, and temperature are all repre-
sented as grid functions in our simulation, as are their gradi-
ents and shock strengths.

The first component of our routine, which runs at every
time-step, calculates the shock strength χφ at each point for
a given simulation quantity φ. The shock front can then be
considered to be the set of points at which the χφ exceeds
a certain threshold value. This shock-tracking component of
the routine can be used in its own right for purposes other than
AMR; for example, the shock can be visualized or the shock
shape and size can be calculated. The second part of our rou-
tine applies AMR to the now-localized shock front. To do
this, it calls upon the AMR capability of CarpetRegrid2,
a module of the Einstein Toolkit.

2.2. Interfacing with CarpetRegrid2

4 The unit for shock strength in our simulation is 1/1.48 km; see Section 1.
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Whenever CarpetRegrid2 is called, it examines a grid
function called the level mask, which can be set by other rou-
tines. The level mask is a non-negative integer5 which speci-
fies the desired level of refinement. If the level mask is n at a
point, then after CR2 runs there will be a block centered there
with resolution 2n times the coarse resolution. The linear size
of the block, given in units of the spacing between points on
the coarse grid, is a parameter that can be set called the adap-
tive block size. Because the level mask can be set at each
grid point, refined regions of arbitrary shape can be created,
ideally creating a region that follows the shock surface.

Our routine sets the level mask to a given value at each
point where the shock strength exceeds a given threshold. Op-
tionally, the level mask can be set to this value throughout a
cube of specified size surrounding each point where the shock
strength exceeds the threshold. The motivation for this option
was to make it possible to set the edges of a refined region far
from a discontinuity such as a shock front if desired.

2.3. Test Cases

For this project we applied our shock-tracking/AMR rou-
tine to two test cases: a simple, spherically-symmetric explo-
sion called the sphereshock simulation and a snapshot of
a post-bounce core-collapse supernova with octant symmetry
called the octant simulation.

2.3.1. sphereshock Simulation

The sphereshock simulation takes place inside a cubical
simulation domain with a side-length of 50 simulation units
(74 km). This domain is filled with a fluid. A large amount
of energy is deposited in a spherically-symmetric region in
the center of the domain, leading to a spherically-symmetric
explosion with outwardly-propagating shock wave. While the
system itself is symmetric, there is no artificial symmetry im-
posed by the simulation – the entire domain is evolved. The
equation of state used is simple, where internal energy is pro-
portional to pressure, and entropy is not defined. This leaves
density and pressure as the most simple quantities with which
to locate the shock.

Figures 1 and 2 depict the density ρ and the pressure
p, respectively, in a cross-section through the origin of
sphereshock after it has been evolved for 80 time-steps.
Figures 3 and 4 show the corresponding shock strengths, χρ

and χp, respectively. Figure 4 shows a much better-defined
shock surface than Figure 3, which is diffuse. For this reason,
we chose to use pressure as the quantity with which to track
the shock for sphereshock.

We chose a shock threshold of 1000 inverse simulation
units. Figure 4 shows what is left when we remove the re-
gions that do not exceed this threshold. The remaining (three-
dimensional) annular surface is defined to be the shock sur-
face. When AMR is applied to this simulation, CR2’s level
mask will be set to 1 on this surface and 0 elsewhere, result-
ing in refinement only near the shock.

In order to characterize the efficiency of AMR versus alter-
natives, we performed experiments whereby sphereshock
was evolved with identical initial conditions for 80 time-steps.

5 Technically, CR2’s implementation of the level mask is a non-negative
real number, which is truncated to an integer before being used.

Figure 1. The z = 0 cross section through the sphereshock simulation
after 80 time-steps, depicting the density ρ. Density, having units of mass per
length cubed, has units of inverse square simulation units because mass and
length are both measured in simulation units. One inverse square simulation
unit is 6.18×1017g cm−3.

Figure 2. The z = 0 cross section through the sphereshock simulation af-
ter 80 time-steps, depicting the pressure p. Pressure, having units of mass per
length per time squared, has units of inverse square simulation units because
mass, length, and time are all measured in simulation units. One inverse
square simulation unit is 5.55×1037 Pa.

We compared AMR to a control case with no refinement and
to a case with one refined, nested box. We refer to the AMR
case as amr, the nested box case as nested, and the con-
trol case with no refinement as control. The resolution of
the refined box in nested and of the refined region in amr
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Figure 3. The z = 0 cross section through the sphereshock simulation
after 80 time-steps, depicting the density shock strength χρ as defined in
Equation 1. The units of shock strength are inverse simulation units. One
inverse simulation unit is 6.76×10−4 m−1.

Figure 4. The z = 0 cross section through the sphereshock simulation
after 80 time-steps, depicting the pressure shock strength χρ as defined in
Equation 1. The units of shock strength are inverse simulation units. One
inverse simulation unit is 6.76×10−4 m−1.

are the same: twice the resolution of the coarse region. Three
experiments were performed for these three refinement meth-
ods: one where the resolution of the coarse level was varied,
one where the the adaptive block size of amr was varied, and
one where the radius of the level mask cubes (described in
Section 2.2) of amr was varied. The runtime of each simula-
tion was measured as well as the total number of grid points

Figure 5. A cut-out of Figure 4 for where the pressure shock strength
exceeds a threshold of 1000 inverse simulation units. What remains is
considered the shock surface and is the output of the shock-tracking routine.
One inverse simulation unit is 6.76×10−4 m−1.

Figure 6. A cross-section of the octant simulation depicting the entropy
shock strength.

in the simulation domain, a proxy for memory usage.

The experiments where the adaptive block size was varied
and the experiments where the level mask cube radius was
varied all occurred at a resolution of 4 per simulation unit. The
experiments where resolution was varied and the experiments
where the adaptive block size was varied all occurred at a level
mask cube radius of 0 simulation units. The adaptive block
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Figure 7. The time required to complete 80 time-steps of control,
nested, and two variants of amr, one with blocksize of 8 coarse-grid spac-
ings and one with blocksize of 12 coarse-grid spacings, as a function of
coarse-grid resolution in the sphereshock simulation. Both variants of
amr had a level mask cube radius of 0, meaning that the only points that
received nonzero level-mask were those where the shock strength exceeded
the set threshold. At resolutions higher than 4 points per simulation unit, the
runtime amr with blocksize 8 is more than an order of magnitude larger than
that of the other simulations, which are all within an order of magnitude of
each other.
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Figure 8. The number of simulation grid points used after 80 time-steps
of control, nested, and two variants of amr, one with blocksize of 8
coarse-grid spacings and one with blocksize of 12 coarse-grid spacings, as a
function of coarse-grid resolution in the sphereshock simulation. Both
variants of amr had a level mask cube radius of 0, and both variants of
amr used slightly fewer grid points than nested, but slightly more than
control.

size of amr was 8 coarse-level spacings in the experiments
where level mask cube radius was varied and was either 8 or
16 coarse-level spacings in the experiments where resolution
was varied (see Figures 7 and 8).

2.3.2. octant Simulation

In the octant simulation, the 27 solar mass core-collapse
supernova model of Woosley et al. (2002) was evolved post-
bounce so that the shock could be seen (Figure 6). In this
experiment, we selected a shock threshold of 3.0 inverse sim-
ulation units and entropy for our shock-tracking quantity. We
attempted to apply adaptive mesh refinement to the shock sur-
face and to evolve the simulation.
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Figure 9. The time required to complete 80 time-steps of control,
nested, and amr, each at a resolution of 4 points per simulation unit, versus
the blocksize of amr. Because control and nested are independent of
adaptive block size, they are constant and plotted here for comparison with
amr. The level mask cube radius of amr was 0.
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Figure 10. The number of simulation grid points used after 80 time-steps of
control, nested, and amr, each at a resolution of 4 points per simulation
unit, versus the blocksize of amr. Because control and nested are
independent of adaptive block size, they are constant and plotted here for
comparison with amr. The level mask cube radius of amr was 0.

3. RESULTS AND DISCUSSION

3.1. sphereshock Results

Figure 7 depicts the runtimes of the coarse-grid-only case
control, the refined-box case nested, and the adaptive
case amr, versus resolution of the coarse grid. Initially amr
had only been run with a blocksize of 8 coarse-level spac-
ings, which resulted in runtimes more than an order of mag-
nitude longer than those of control and nested, which
were basically equivalent. However, the results of Figure 9
motivated us to test amr with a blocksize of 12 coarse-level
spacings, the result of which can be seen in Figure 7. Fig-
ure 9 shows that, at a resolution of 4 points per simulation
units, amr with a blocksize of 12 performs no worse than
twice as slow as control and nested, whereas amr with
a blocksize of 8 performs a factor of 10 slower. However, the
danger of increasing the block size is losing the advantage of
AMR, which is minimizing the volume of simulation space
that is refined. Thus, the number of grid points, a proxy for
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Figure 11. The coarse-grid-only structure of control at a resolution of 4
points per simulation unit.

Figure 12. The coarse-grid and refined nested-box of nested at a resolu-
tion of 4 points per simulation unit. The refined region is shaded.

the memory usage of the simulation, goes up. However, Fig-
ure 10 demonstrates that the number of grid points in amr
only weakly increases with blocksize, and is comparable to
the number of points used in control and nested. In fact,
Figure 8 shows that the number of grid points used by the two
variants of amr is less that that of nested for every tested
resolution, though any refinement uses more grid points than
the coarse-level-only control, as expected. Figure 14 shows
that even with this larger block size, the interior region is left
unrefined.

The cube radius of the level mask-setting routine is a pa-
rameter whose implementation was motivated by problems
experienced with octant. The goal was to move the edges
of the refined region far enough from the shock front so that
no abrupt changes crossed the boundary between the refined
region and the unrefined region. Figures 15 and 16 demon-
strate that the runtime of amr goes down while the number
of grid points used goes up as the level mask cube radius is
increased.

Figure 13. The coarse-grid and adaptively-refined regions of amr with
blocksize of 8 coarse-grid spacings. The interior region is visible unrefined.
The refined region is shaded.

Figure 14. The coarse-grid and adaptively-refined regions of amr with
blocksize of 12 coarse-grid spacings. The interior region is visible unrefined.
The refined region is shaded.

3.2. octant Results

Our preliminary attempts to apply AMR to the octant
simulation failed because negative temperatures appeared
when the simulation was evolved. Negative temperatures
are invalid for the equation of state used in the supernova,
so the simulation was aborted. The reason for their appear-
ance may be that interpolation between the coarse layer and
the refined layer near the rapidly-changing shock lead to un-
physical results. This phenomenon may have been hidden in
sphereshock because of the very simple equation of state
used there; octant uses a tabulated equation of state that
may be more prone to this problem.

To attempt to solve this problem, we varied both the adap-
tive block size and the level mask cube radius to change the
geometry of the refined region. However, the problem with
negative temperatures only disappeared when the block size
was so large that the refined region was basically a nested
box, defeating the purpose of the adaptive mesh refinement.
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Figure 15. The time required to complete 80 time-steps of control,
nested, and amr, each at a resolution of 4 points per simulation unit, ver-
sus the level mask cube radius of amr. Because control and nested are
independent of level mask cube radius, they are constant and plotted here for
comparison with amr. The adaptive block size of amr was 8.
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Figure 16. The number of simulation grid points used after 80 time-steps of
control, nested, and amr, each at a resolution of 4 points per simulation
unit, versus the level mask cube radius of amr. Because control and
nested are independent of level mask cube radius, they are constant and
plotted here for comparison with amr. The adaptive block size of amr was 8.

4. CONCLUSION

In this project we successfully implemented a shock-
tracking routine which locates shock fronts by outputting a
“shock strength” grid function, the shock surface being where
the shock strength is large. This routine can be used in con-
junction with any other routine or analytical tool that requires
localization of the shock wave in real-time. The shock-tracker
can localize multiple shocks in one simulation, and the shocks
can have any shape.

We successfully coupled adaptive mesh refinement to the
shock tracker in the simple, spherically-symmetric explosion
simulation sphereshock. In doing so, we showed that
an adaptive block size of 12 coarse-level spacings results in
simulation runtimes that are comparable to runtimes of sim-
ulations with nested-box refinement and simulations with no
refinement at all. The number of grid points used by these
adaptive runs was less what was used by the nested-box runs,
which is important because current supernova simulations are
largely limited by available memory.

In a full supernova simulation such as octant, where
the evolution steps are much more costly than in our simple
sphereshock simulation, the runtime with AMR may be
faster than the runtime with nested boxes because the amount
of time spent doing evolution is proportional to the number of
points that need to be evolved. Unfortunately, we were unable
to test this possibility because of the interpolation problems
mentioned in Section 3.2.

Adaptive mesh refinement is a promising technique that can
reduce memory usage in supernovae simulations. If the adap-
tive block size is set correctly, the runtimes of simulations us-
ing AMR are comparable to those using nested boxes instead.
In the future, we plan to investigate ways to successfully apply
AMR to the octant simulation so that we can characterize
the benefits of AMR in supernova simulations. We may also
look to other supernova models to see if the problem persists.
Additionally, we plan to apply AMR to other parts of the su-
pernova, such as the proto-neutron star, to resolve them more
effectively.
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