
G1400384-v1 Control State Definition 1

Control State Definition

March 25, 2014
Daniel Sigg, Chris Wipf, Stefan Ballmer



G1400384-v1 Control State Definition 2

Save/Restore

 Relying on save/restore yields inconsistent results
 Problem 1: “Everyone needs to keep up the snap file”
 Problem 2: What to restore to?

Restore to a “good configuration” is a recipe for disaster
 Problem 3: Restore sometimes skips channels
 Problem 4: Anyone can make a change without save/restore
 Problem 5: No good way to tell how actual differs from snap
 Problem 6: No easy way to make an incremental change
 Problem 7: It scales badly
 Problem 8: No easy way to keep subsystems in sync (EX vs. EY)
 Problem 9: No good way to keep multiple configurations for the same 

system (e.g. LSC for PRX vs. PRY vs. PRMI, or ASC for PRMI vs. FL)
 Relies on everyone doing the right thing all the time
 Broken work flow!



G1400384-v1 Control State Definition 3

Filter files

 This is a work flow which functions well
 Reason 1: All changes are going through a configuration file
 Reason 2: This is the only way to make a change
 Reason 3: There is a GUI to make the changes
 Reason 4: Changes are done incrementally
 Reason 5: You always know what’s running
 Reason 6: We have a record of old filter files 

 The only way to fix a problem is to actually fix it



G1400384-v1 Control State Definition 4

“New” Approach to Save/Restore

 Divide slow controls channels into 4 groups
1. Readbacks (ignore for now)
2. Most of our controls never change
3. Some change states in a trivial matter

E.g., boost on when lock bit is set, input matrix for PRX, PRY etc.
4. Some need to change all the time

 Control State Definition is meant for 2 & 3 (some)
 Group 4 requires code, i.e., guardian

 CSDef tries to mimic the work flow for filter files 



G1400384-v1 Control State Definition 5

Scaling is Important

 Slow channels:
 ~300,000 slow channels per ifo
 ~100,000 can be set
 ~20,000 do change 
 Maybe 10,000 left once you have lookup tables

 Good bookkeeping matters!
 Configuration needs to be duplicated between 

identical sub-systems
 GUI tool is vitally important to get operators involved
 Commissioning team cannot handle ~100,000 

variables



G1400384-v1 Control State Definition 6

Control State Definition

 Configuration file:
 All slow controls channels must be listed

 Even, if they are under outside control
 All unlisted channels are held at zero constant

 Most channels will be set to a constant value
(as opposite to manual)

 Includes safe and default values
 Includes lookup tables

Most lookup table will have 2 states: “Off” and “Init”
 Replacement rules for channel names
 Conditions and Includes for site/location specific configurations

 XML GUI editors are available (schema available)
 Validating parser exists (C++ code)



G1400384-v1 Control State Definition 7

Control State Definition (2)

 State machine
 Usual: Init, PreOp, SafeOp and Op modes
 Will set all values to safe in SafeOp
 Will set all values to their default when switching to Op
 Will set values to their configuration when in Op
 Loads a new configuration file upon request
 Implemented as a guardian script or as part of the EPICS ioc

 Will initialize all values upon a restart
 Checks constantly while in Op mode
 A value cannot be changed, if it is set constant
 All changes need to go through configuration file

 Of course, many channels will just be set to manual mode
 SM watches configuration file and indicates, if it has changed 



G1400384-v1 Control State Definition 8

How to support commissioning

 Changing the configuration file is as easy as 
changing a filter

 Lookup tables have an “Off” state
 Section a large front-end model into different domains
 Allows to “talk” in states rather than values, e.g., run/acquisition
 Allows to gang filter banks
 Allows for fine grade control

 The state machine can be set into PreOp (no writes)
 Less time wasted to find out “has this changed?”
 Broader user base for keeping up the configuration



G1400384-v1 Control State Definition 9

Why not…

 Hardcode it all in the front-end
 ECR to change values? Front-end models become very cluttered

 Write an incredibly large guardian script
 How can you tell what’s going on w/o reverse engineering the code?
 How can you tell that you didn’t forget a channel?

 Use hash values in the front end
 How do you tell what’s wrong?

 Use the EPICS access controls
 This is not a security issue!

 Resurrect the iLIGO Stat system 
 Creates too many secondary channels, CALC records too limited

 Just stay with safe/restore and snap files
 Proven to be problematic



G1400384-v1 Control State Definition 10

Next on the list

 Alarm and error handling
 Problem 1: Alarms are global, should be reserved for real problems
 Problem 2: No clear text messages, why does the IMC not lock?
 Problem 3: Serious problems go unnoticed
 Problem 4: Rediscovering the same issues again and again 

is a major source of wasted time

 Solution with better track record:
 Condition code pioneered for the squeezer/OAT auto-lockers
 Hierarchical error structures (error bit, multi-bit code and msg)
 Each guardian/auto-locker/etc. has a set of conditions which need 

to be fulfilled to proceed (can be bypassed)
 Clear text messages of what’s wrong
 Required additional sensors in OAT!


	Control State Definition
	Save/Restore
	Filter files
	“New” Approach to Save/Restore
	Scaling is Important
	Control State Definition
	Control State Definition (2)
	How to support commissioning
	Why not…
	Next on the list

